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1.1 Introduction

Think of the initial configuration of a data structure as version zero, and of every subsequent
update operation as generating a new version of the data structure. Then a data structure
is called persistent if it supports access to all versions and it is called ephemeral otherwise.
The data structure is partially persistent if all versions can be accessed but only the newest
version can be modified. The structure is fully persistent if every version can be both
accessed and modified. The data structure is confluently persistent if it is fully persistent
and has an update operation which combines more than one version. Let the version graph
be a directed graph where each node corresponds to a version and there is an edge from node
Vi to a node V5 if and only of V5 was created by an update operation to V;. For partially
persistent data structure the version graph is a path; for fully persistent data structure the
version graph is a tree; and for confluently persistent data structure the version graph is a
directed acyclic graph (DAG).

A notion related to persistence is that of purely functional data structures. (See Chapter
46 by Okasaki in this handbook.) A purely functional data structure is a data structure
that can be implemented without using an assignment operation at all (say using just the
functions CAR, CDR, and CONs, of pure lisp). Such a data structure is automatically per-
sistent. The converse, however, is not true. There are data structures which are persistent
and perform assignments.

Since the seminal paper of Driscoll, Sarnak, Sleator, and Tarjan (DSST) [18], and over the
past fifteen years, there has been considerable development of persistent data structures.
Persistent data structures have important applications in various areas such as functional
programming, computational geometry and other algorithmic application areas.

The research on persistent data structures splits into two main tracks. The first track is of
designing general transformations that would make any ephemeral data structure persistent
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while introducing low overhead in space and time. The second track is on how to make
specific data structures, such as lists and search trees, persistent. The seminal work of
DSST mainly addresses the question of finding a general transformation to make any data
structure persistent. In addition DSST also address the special case of making search trees
persistent in particular. For search trees they obtain a result which is better than what one
gets by simply applying their general transformation to, say, red-black trees.

There is a naive scheme to make any data structure persistent. This scheme performs the
operations exactly as they would have been performed in an ephemeral setting but before
each update operation it makes new copies of all input versions. Then it performs the
update on the new copies. This scheme is obviously inefficient as it takes time and space
which is at least linear in the size of the input versions.

When designing an efficient general transformation to make a data structure persistent
DSST get started with the so called fat node method. In this method you allow each field
in the data structure to store more than one value, and you tag each value by the version
which assigned it to the field. This method is easy to apply when we are interested only in a
partially persistent data structure. But when the target is a fully persistent data structure,
the lack of linear order on the versions already makes navigation in a naive implementation
of the fat node data structure inefficient. DSST manage to limit the overhead by linearizing
the version tree using a data structure of Dietz and Sleator so we can determine fast whether
one version precedes another in this linear order.

Even when implemented carefully the fat node method has logarithmic (in the number
of versions) time overhead to access or modify a field of a particular node in a particular
version. To reduce this overhead DSST described two other methods to make data structures
persistent. The simpler one is the node copying method which is good to obtain partially
persistent data structures. For obtaining fully persistent data structures they suggest the
node splitting method. These methods simulate the fat node method using nodes of constant
size. They show that if nodes are large enough (but still of constant size) then the amount
of overhead is constant per access or update of a field in the ephemeral data structure.

These general techniques suggested by DSST have some limitations. First, all these
methods, including even the fat node method, fail to work when the data structure has
an operation which combines more than one version, and confluent persistence is desired.
Furthermore, the node splitting and node copying methods apply only to pointer based data
structures (no arrays) where each node is of constant size. Since the simulation has to add
reverse pointers to the data structure the methods require nodes to be of bounded indegree
as well. Last, the node coping and the node splitting techniques have O(1) amortized
overhead per update or access of a field in the ephemeral data structure. DSST left open
the question of how to make this overhead O(1) in the worst case.

These limitations of the transformations of DSST were addressed by subsequent work.
Dietz and Raman [13] and Brodal [5] addressed the question of bounding the worst case
overhead of an access or an update of a field. For partial persistence Brodal gives a way
to implement node coping such that the overhead is O(1) in the worst case. For fully
persistence, the question of whether there is a transformation with O(1) worst case overhead
is still unresolved.

The question of making data structures that use arrays persistent with less than loga-
rithmic overhead per step has been addressed by Dietz [12]. Dietz shows how to augment
the fat node method with a data structure of van Emde Boaz, Kaas, and Zijlstra [34, 33]
to make an efficient fully persistent implementation of an array. With this implementation,
if we denote by m the number of updates, then each access takes O(loglogm) time, an
update takes O(loglogm) expected amortized time and the space is linear in m. Since we
can model the memory of a RAM by an array, this transformation of Dietz can make any
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data structure persistent with slowdown double logarithmic in the number of updates to
memory.

The question of how to make a data structure with an operation that combines versions
confluently persistent has been recently addressed by Fiat and Kaplan [19]. Fiat and Kaplan
point out the fundamental difference between fully persistence and confluently persistence.
Consider the naive scheme described above and assume that each update operation creates
constantly many new nodes. Then, as long as no update operation combines more than
one version, the size of any version created by the naive scheme is linear in the number
of versions. However when updates combine versions the size of a single version can be
exponential in the number of versions. This happens in the simple case where we update a
linked list by concatenating it to itself n times. If the initial list is of size one then the final
list after n concatenations is of size 2".

Fiat and Kaplan prove by simple information theoretic argument that for any general
reduction to make a data structure confluently persistent there is a DAG of versions which
cannot be represented using only constant space per assignment. Specifically, Fiat and
Kaplan define the effective depth of the DA G which is the logarithm of the maximum number
of different paths from the root of the DAG to any particular vertex. They show that the
number of bits that may be required for assignment is at least as large as the effective depth
of the DAG. Fiat and Kaplan also give several methods to make a data structure confluently
persistent. The simplest method has time and space overhead proportional to the depth
of the DAG. Another method has overhead proportional to the effective depth of the DAG
and degenerate to the fat node method when the DAG is a tree. The last method reduce
the time overhead to be polylogarithmic in either the depth of the DAG or the effective
depth of the DAG at the cost of using randomization and somewhat more space.

The work on making specific data structures persistent has started even prior to the work
of DSST. Dobkin and Munro [16] considered a persistent data structure for computing the
rank of an object in an ordered set of elements subject to insertions and deletions. Overmars
[29] improved the time bounds of Dobkin and Munro and further reduced the storage for
the case where we just want to determine whether an element is in the current set or not.
Chazelle [8] considered finding the predecessor of a new element in the set. As we already
mentioned DSST suggest two different ways to make search trees persistent. The more
efficient of their methods has O(logn) worst case time bound and O(1) worst case space
bound for an update.

A considerable amount of work has been devoted to the question of how to make con-
catenable double ended queues (deques) confluently persistent. Without catenation, one
can make deques fully persistent either by the general techniques of DSST or via real-time
simulation of the deque using stacks (see [23] and the references there). Once catenation is
added, the problem of making stacks or deques persistent becomes much harder, and the
methods mentioned above fail. A straightforward use of balanced trees gives a representa-
tion of persistent catenable deques in which an operation on a deque or deques of total size n
takes O(logn) time. Driscoll, Sleator, and Tarjan [17] combined a tree representation with
several additional ideas to obtain an implementation of persistent catenable stacks in which
the k" operation takes O(loglogk) time. Buchsbaum and Tarjan [7] used a recursive de-
composition of trees to obtain two implementations of persistent catenable deques. The first
has a time bound of 2°(°¢” #) and the second a time bound of O(log* k) for the k'" operation,
where log* k is the iterated logarithm, defined by log(]) k = log, k, log(i) k =log log(’;]) k
for i > 1, and log* k = min{i | log” k < 1}.

Finally, Kaplan and Tarjan [23] gave a real-time, purely functional (and hence confluently
persistent) implementation of deques with catenation in which each operation takes O(1)
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time in the worst case. A related structure which is simpler but not purely functional
and has only amortized constant time bound on each operation has been given by Kaplan,
Okasaki, and Tarjan [21]. A key ingredient in the results of Kaplan and Tarjan and the
result of Kaplan, Okasaki, and Tarjan is an algorithmic technique related to the redundant
digital representations devised to avoid carry propagation in binary counting [9]. If removing
elements from one side of the deque is disallowed Okasaki [28] suggested another confluently
persistent implementation with O(1) time bound for every operation. This technique is
related to path reversal technique which is used in some union-find data structures [32].

Search trees also support catenation and split operations [31] and therefore confluent
persistence implementation of search trees is natural to ask for. Search tree can be made
persistent and even confluently persistent using the path copying technique [18]. In path
coping you copy every node that changes while updating the search tree and its ancestors.
Since updates to search trees affect only a single path, this technique results in copying at
most one path and thereby costs logarithmic time and space per update. Making finger
search trees confluently persistent is more of a challenge, as we want to prevent the update
operation to propagate up on the leftmost and rightmost spines of the tree. This allows
to make an update at distance d from the beginning or end of the list in O(logd) time.
Kaplan and Tarjan [22] used the redundant counting technique to make finger search tree
confluently persistent. Using the same technique they also managed to reduce the time
(and space) overhead of catenation to be O(loglogn) where n is the number of elements in
the larger tree.

The structure of the rest of this paper is as follows. Section 1.2 describes few algorithms
that use persistent data structures to achieve their best time or space bounds. Section
1.3 surveys the general methods to make data structures persistent. Section 1.4 gives the
highlights underlying persistent concatenable deques. We conclude in Section 1.5.

1.2 Algorithmic applications of persistent data structures

The basic concept of persistence is general and may arise in any context where one maintains
a record of history for backup and recovery, or for any other purpose. However, the most
remarkable consequences of persistent data structures are specific algorithms that achieve
their best time or space complexities by using a persistent data structure. Most such
algorithms solve geometric problems but there are also examples from other fields. In this
section we describe few of these algorithms.

The most famous geometric application is the algorithm for planar point location by
Sarnak and Tarjan [30] that triggered the development of the whole area. In the planar
point location problem we are given a subdivision of the Euclidean plane into polygons
by n line segments that intersect only at their endpoints. The goal is to preprocess these
line segments and build a data structure such that given a query point we can efficiently
determine which polygon contains it. As common in this kind of computational geometry
problems, we measure a solution by three parameters: The space occupied by the data
structure, the preprocessing time, which is the time it takes to build the data structure,
and the query time.

Sarnak and Tarjan suggested the following solution (which builds upon previous ideas of
Dobkin and Lipton [15] and Cole [10]). We partition the plane into vertical slabs by drawing
a vertical line through each vertex (intersection of line segments) in the planar subdivision.
Notice that the line segments of the subdivision intersecting a slab are totally ordered. Now
it is possible to answer a query by two binary searches. One binary search locates the slab
that contains the query, and another binary search locates the segment preceding the query
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point within the slab. If we associate with each segment within a slab, the polygon just
above it, then we have located the answer to the query. If we represent the slabs by a binary
search tree from left to right, and the segments within each slab by a binary search tree
sorted from bottom to top, we can answer a query in O(logn) time.! However if we build
a separate search tree for each slab then the worst case space requirement is (n?), when
Q(n) lines intersect (n) slabs.

The key observation is that the sets of line segments intersecting adjacent slabs are similar.
If we have the set of one particular slab we can obtain the set of the slab to its right by
deleting segments that end at the boundary between these slabs, and inserting segments
that start at that boundary. As we sweep all the slabs from left to right we get that in
total there are n deletions and n insertions; one deletion and one insertion for every line
segment. This observation reduces the planar point location to the problem of maintaining
partially persistent search trees. Sarnak and Tarjan [30] suggested a simple implementation
of partially persistent search tree where each update takes O(logn) amortized time and
consumes O(1) amortized space. Using these search trees they obtained a data structure
for planar point location that requires O(n) space, takes O(nlogn) time to build, and can
answer each query in O(logn) time.

The algorithm of Sarnak and Tarjan for planar point location in fact suggests a general
technique for transforming a 2-dimensional geometric search problem into a persistent data
structure problem. Indeed several applications of this technique have emerged since Sarnak
and Tarjan published their work [3]. As another example consider the problem of 3-sided
range searching in the plane. In this problem we preprocess a set of n points in the plane
so given a triple (a,b,c) with a < b we can efficiently reports all points (z,y) € S such
that a < z < b, and y < ¢. The priority search tree of McCreight [26] yields a solution to
this problem with O(n) space, O(nlogn) preprocessing time, and O(logn) time per query.
Using persistent data structure, Boroujerdi and Moret [3] suggest the following alternative.
Let y; < y2 < --- < y, be the y-coordinates of the points in S in sorted order. For each
i, 1 < i < n we build a search tree containing all i points (z,y) € S where y < y;, and
associate that tree with y;. Given this collection of search tree we can answer a query
(a,b,c) in O(logn) time by two binary searches. One search uses the y coordinate of the
query point to find the largest i such that y; < ¢. Then we use the search tree associated
with y; to find all points (z,y) in it with a < x < b. If we use partially persistent search
trees then we can build the trees using n insertions so the space requirement is O(n), and
the preprocessing time is O(nlogn).

This technique of transforming a 2-dimensional geometric search problem into a persistent
data structure problem require only a partially persistent data structure. This is since we
only need to modify the last version while doing the sweep. Applications of fully persistent
data structures are less common. However few interesting ones do exists.

One such algorithm that uses a fully persistent data structure is the algorithm of Alstrup
et. al. for the binary dispatching problem [1]. In object oriented languages there is a
hierarchy of classes (types) and method names are overloaded. I.e. a method may have
different implementations for different types of its arguments. At run time when a method
is invoked, the most specific implementation which is appropriate for the arguments has
to be activated. This is a critical component of execution performance in object oriented
languages. Here is a more formal specification of the problem.

We model the class hierarchy by a tree T' with n nodes, each representing a class. A

I'Note that testing whether a point is above or below a line takes O(1) time.
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class A which is a descendant of B is more specific than B and we denote this relation by
A < Bor A< B if we know that A # B. In addition we have m different implementations
of methods, where each such implementation is specified by a name, number of arguments,
and the type of each argument. We shall assume that m > n, as if that is not the case
we can map nodes that do not participate in any method to their closest ancestor that
does participate in O(n) time. A method invocation is a query of the form s(Aq,..., Ay)
where s is a method name that has d arguments with types Aq,..., A4, respectively. An
implementation s(By, ..., By) is applicable for s(Ay,...,A4) if A; < B; for every 1 < i < d.

3

The most specific method which is applicable for s(Ay, ..., A4) is the method s(By,. .., B4)

3

such that A; < B; for 1 < i < d, and for any other implementation s(C1, ..., Cy) which is
applicable for s(Ay,..., Ay) we have B; < C; for 1 < i < d. Note that for d > 1 this may
be ambiguous, i.e. we might have two applicable methods s(Bi, ..., By) and s(Cy,...,Cy)
where B; # C;, B; # C;, B; < C; and C; < B;. The dispatching problem is to find for each
invocation the most specific applicable method if it exists. If it does not exist or in case of
ambiguity, “no applicable method” or “ambiguity” has to be reported, respectively. In the
binary dispatching problem, d = 2, i.e. we assume that all implementations and invocations
have two arguments.

Alstrup et. al. describe a data structure for the binary dispatching problem that use
O(m) space, O(m(loglogm)?) preprocessing time and O(logm) query time. They obtain
this data structure by reducing the problem to what they call the bridge color problem. In
the bridge color problem the input consists of two trees 77 and T3 with edges, called bridges,
connecting vertices in T to vertices in Ty. Each bridge is colored by a subset of colors from
C. The goal is to construct a data structure which allows queries of the following form.
Given a triple (v1,vs,c¢) where v € Ty, vy € Ty, and ¢ € C finds the bridge (w1, w,) such
that

1. v1 < w; in Ty, and vy < ws in Ty, and c is one of the colors associated with
(w1, ws).

2. There is no other such bridge (w', w") with vo < w"” < w9 or v; < w' < wy.

If there is no bridge satisfying the first condition the query just returns nothing and if there
is a bridge satisfying the first condition but not the second we report “ambiguity”. We
reduce the binary dispatching problem to the bridge color problem by taking 77 and T3 to
be copies of the class hierarchy T" of the dispatching problem. The set of colors is the set of
different method names. (Recall that each method name may have many implementations
for different pairs of types.) We make a bridge (vi,vs) between v; € T) and vy € T
whenever there is an implementation of some method for classes v; and vs. We color the
bridge by all names of methods for which there is an implementation specific to the pair
of type (v1,v2). It is easy to see now that when we invoke a method s(A;, As) the most
specific implementation of s to activate corresponds to the bridge colored s connecting an
ancestor of v; to an ancestor of v which also satisfies Condition (2) above.

In a way which is somewhat similar to the reduction between static two dimensional
problem to a dynamic one dimensional problem in the plane sweep technique above, Alstrup
et. al. reduce the static bridge color problem to a similar dynamic problem on a single tree
which they call the tree color problem. In the tree color problem you are given a tree T,
and a set of colors C. At any time each vertex of T' has a set of colors associated with it.
We want a data structure which supports the updates, color(v,c): which add the color ¢ to
the set associated with v; and uncolor(v,c) which deletes the color ¢ from the set associated
with v. The query we support is given a vetrex v and a color ¢, find the closest ancestor of
v that has color c.
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The reduction between the bridge color problem and the tree color problem is as follows.
For each node v € T we associate an instance f, of the tree color problem where the
underlying tree is 75 and the set of colors C' is the same as for the bridge color problem.
The label of a node w € T in ¢,, contains color ¢ if w is an endpoint of a bridge with color ¢
whose endpoint in T} is an ancestor of v. For each pair (w, ¢) where w € Ty and ¢ is a color
associated with w in £, we also keep the closest ancestor v’ to v in T7 such that there is a
bridge (v', w) colored e¢. We can use a large (sparse) array indexed by pairs (w, ¢) to map
each such pair to its associated vertex. We denote this additional data structure associated
with v by a,. Similarly for each vertex u € Ty we define an instance ¢, of the tree color
problem when the underlying tree is 77, and the associated array a,,.

We can answer a query (v, va,¢) to the bridge color data structure as follows. We query
the data structure £,, with vy to see if there is an ancestor of vy colored ¢ in the coloring
of Ty defined by £,,. If so we use the array a,, to find the bridge (w1, w,) colored ¢ where
vy < wy and vy < wy, and w; is as close as possible to v;. Similarly we use the data
structures £,, and a,, to find the bridge (wy,ws) colored ¢ where v; < w; and ve < ws,
and w» is as close as possible to vy, if it exists. Finally if both bridges are identical then
we have the answer to the query (vi,vs,¢) to the bridge color data structure. Otherwise,
either there is no such bridge or there is an ambiguity (when the two bridges are different).

The problem of this reduction is its large space requirement if we represent each data
structure £, and a, for v € T7 UT, independently.? The crucial observation though is that
these data structures are strongly related. Thus if we use a dynamic data structure for
the tree color problem we can obtain the data structure corresponding to w from the data
structure corresponding to its parent using a small number of modifications. Specifically,
suppose we have generated the data structures £, and a, for some v € T}. Let w be a child
of v in T1. We can construct ¢,, by traversing all bridges whose one endpoint is w. For each
such bridge (w,u) colored ¢, we perform color(u,c), and update the entry of (u,¢) in a, to
contain w.

So if we were using fully persistent arrays and a fully persistent data structure for the tree
color problem we can construct all data structures mentioned above while doing only O(m)
updates to these persistent data structures. Alstrup et. al. [1] describe a data structure for
the tree color problem where each update takes O(loglogm) expected time and query time
is O(logm/loglogm). The space is linear in the sum of the sizes of the color-sets of the
vertices. To make it persistent without consuming too much space Alstrup et. al. [1] suggest
how to modify the data structure so that each update makes O(1) memory modifications
in the worst case (while using somewhat more space). Then by applying the technique of
Dietz [12] (see also Section 1.3.3) to this data structure we can make it fully persistent.
The time bounds for updates and queries increase by a factor of O(loglogm), and the
total space is O(]C|m). Similarly, we can make the associated arrays a, fully persistent.
The resulting solution to the binary dispatching problem takes O(m(loglogm)?) time to
construct, requires O(|C|m) space and support a query in O(log m) time. Since the number
of memory modifications while constructing the data structure is only O(m) Alstrup et.
al. also suggest that the space can be further reduces to O(m) by maintaining the entire
memory as a dynamic perfect hashing data structure.

Fully persistent lists proved useful in reducing the space requirements of few three di-
mensional geometric algorithms based on the sweep line technique, where the items on the

2We can compress the sparse arrays using hashing but even if we do that the space requirement may be
quadratic in m.
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sweep line have secondary lists associated with them. Kitsios and Tsakalidis [25] considered
hidden line elimination and hidden surface removal. ~ The input is a collection of (non
intersecting) polygons in three dimensions. The hidden line problem asks for the parts of
the edges of the polygons that are visible from a given viewing position. The hidden surface
removal problem asks to compute the parts of the polygons that are visible from the viewing
position.

An algorithm of Nurmi [27] solves these problems by projecting all polygons into a col-
lection of possible intersecting polygons in the plane and then sweeping this plane, stopping
at any vertex of a projected polygone, or crossing point of a pair of projected edges. When
the sweep stops at such point, the visibility status of its incident edges is determined. The
algorithm maintain a binary balanced tree which stores the edges cut by the sweep line in
sorted order along the sweep line. With each such edge it also maintains another balanced
binary tree over the faces that cover the interval between the edge and its successor edge
on the sweep line. These faces are ordered in increasing depth order along the line of sight.
An active edge is visible if the topmost face in its list is different from the topmost face in
the list of its predecessor. If n is the number of vertices of the input polygons and [ is the
number of intersections of edges on the projection plane then the sweep line stops at n + I
points. Looking more carefully at the updates one has to perform during the sweep, we
observe that a constant number of update operations on balanced binary search trees has to
be performed non destructively at each point. Thus, using fully persistent balanced search
trees one can implement the algorithm in O((n + I) log n) time and O(n + I) space. Kitsios
and Tsakalidis also show that by rebuilding the data structure from scratch every O(n)
updates we can reduce the space requirement to O(n) while retaining the same asymptotic
running time.

Similar technique has been used by Bozanis et. al. [4] to reduce the space requirement of
an algorithm of Gupta et. al. [20] for the rectangular enclosure reporting problem. In this
problem the input is a set S of n rectangles in the plane whose sides are parallel to the axes.
The algorithm has to report all pairs (R, R') of rectangles where R, R' € S and R encloses
R'. The algorithm uses the equivalence between the rectangle enclosure reporting problem
and the 4-dimensional dominance problem. In the 4-dimensional dominance problem the
input is a set of n points P in four dimensional space. A point p = (p1, p2, p3, p4) dominates
p' = (p.ph, Py, p}) if and only if p; > p} for i = 1,2, 3,4. We ask for an algorithm to report
all dominating pairs of points, (p,p'), where p,p’ € P, and p dominates p’. The algorithm
of Gupta at. el. first sorts the points by all coordinates and translates the coordinates to
ranks so that they become points in U* where U = {0,1,2,...,n}. It then divides the sets
into two equal halves R and B according to the forth coordinate (R contains the points with
smaller forth coordinate). Using recurrence on B and on R it finds all dominating pairs
(p,p') where p and p’' are either both in B or both in R. Finally it finds all dominating
pairs (r,b) where r € R and b € B by iterating a plane sweeping algorithm on the three
dimensional projections of the points in R and B. During the sweep, for each point in B, a
list of points that it dominates in R is maintained. The size of these lists may potentially
be as large as the output size which in turn may be quadratic. Bozanis et. al. suggest to
reduce the space by making these lists fully persistent, which are periodically being rebuilt.

1.3 General techniques for making data structures persis-
tent

We start in Section 1.3.1 describing the fat node simulation. This simulation allows to obtain
fully persistent data structures and has an optimal space expansion but time slowdown

www.manaraa.com



Persistent data structures 1-9

logarithmic in the number of versions. Section 1.3.2 describes the node copying and the
node splitting methods that reduce the time slowdown to be constant while increasing the
space expansion only by a constant factor. In Section 1.3.3 we address the question of
making arrays persistent. Finally in Section 1.3.4 we describe simulation that makes data
structures confluently persistent.

1.3.1 The fat node method

DSST first considered the fat node method. The fat node method works by allowing a field
in a node of the data structure to contain a list of values. In a partial persistent setting we
associate field value = with version number i, if = was assigned to the field in the update
operation that created version i.> We keep this list of values sorted by increasing version
number in a search tree. In this method simulating an assignment takes O(1) space, and
O(1) time if we maintain a pointer to the end of the list. An access step takes O(logm)
time where m is the number of versions.

The difficulty with making the fat node method work in a fully persistent setting is the
lack of total order on the versions. To eliminate this difficulty, DSST impose a total order
on the versions consistent with the partial order defined by the version tree. They call this
total order the version list. When a version i is created it is inserted into the version list
immediately after its parent (in the version tree). This implies that the version list defines
a preorder on the version tree where for any version i, the descendants of i in the version
tree occur consecutively in the version list, starting with i.

The version list is maintained in a data structure that given two versions = and y allows
to determine efficiently whether = precedes y. Such a data structure has been suggested by
Dietz and Sleator [11]. (see also a simpler related data structure by [2].) The main idea
underlying these data structures is to assign an integer label to each version so that these
labels monotonically increase as we go along the list. Some difficulty arises since in order
to use integers from a polynomial range we occasionally have to relabel some versions. For
efficient implementation we need to control the amount of relabeling being done. We denote
such a data structure that maintains a linear order subject to the operation insert(x,y)
which inserts z after y, and order(x,y) which returns “yes” if z precedes y, an Order
Maintenance (OM) data structure.

As in the partial persistence case we keep a list of version-value pairs in each field. This
list contains a pair for each value assigned to the field in any version. These pairs are ordered
according to the total order imposed on the versions as described above. We maintain these
lists such that the value corresponding to field f in version i is the value associated with the
largest version in the list of f that is not larger than 7. We can find this version by carrying
out a binary search on the list associated with the field using the OM data structure to do
comparisons.

To maintain these lists such that the value corresponding to field f in version i is the value
associated with the largest version in the list of f that is not larger than ¢, the simulation of
an update in the fully persistent setting differ slightly from what happens in the partially
persistent case. Assume we assign a value z to field f in an update that creates version i.
(Assume for simplicity that this is the only assignment to f during this update.) First we
add the pair (i,z) to the list of pairs associated with field f. Let i’ be the version following

3If the update operation that created version i assigned to a particular field more than once we keep
only the value that was assigned last.
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i in the version list (i.e. in the total order of all versions) and let i" be the version following
i in the list associated with f. ( If there is no version following 4 in one of these lists we
are done.) If " > i’ then the addition of the pair (i,z) to the list of pairs associated with
f may change the value of f in all versions between i’ and the version preceding " in the
version list, to be z. To fix that we add another pair (i’,y) to the list associated with f,
where y is the value of f before the assignment of z to f. The overhead of the fat node
method in a fully persistent settings is O(logm) time and O(1) space per assignment, and
O(logm) time per access step, where m is the number of versions. Next, DSST suggested
two methods to reduce the logarithmic time overhead of the fat node method. The simpler
one obtains a partially persistent data structure and is called node copying. To obtain a
fully persistent data structure DSST suggested the node splitting method.

1.3.2 Node copying and node splitting

The node-coping and the node splitting methods simulate the fat node method using nodes
of constant size. Here we assume that the data structure is a pointer based data structure
where each node contains a constant number of fields. For reasons that will become clear
shortly we also assume that the nodes are of constant bounded in-degree, i.e. the number
of pointer fields that contains the address of any particular node is bounded by a constant.

In the node copying method we allow nodes in the persistent data structure to hold only
a fixed number of field values. When we run out of space in a node, we create a new copy
of the node, containing only the newest value of each field. Let d be the number of pointer
fields in an ephemeral node and let p be the maximum in-degree of an ephemeral node. Each
persistent node contains d fields which corresponds to the fields in the ephemeral node, p
predecessor fields, e extra fields, where e is a sufficiently large constant that we specify later,
and one field for a copy pointer.

All persistent nodes which correspond to the same ephemeral node are linked together
in a single linked list using the copy pointer. Each field in a persistent node has a version
stamp associated with it. As we go along the chain of persistent nodes corresponding to
one ephemeral node then the version stamps of the fields in one node are no smaller than
version stamps of the fields in the preceding nodes. The last persistent node in the chain is
called live. This is the persistent node representing the ephemeral node in the most recent
version which we can still update. In each live node we maintain predecessor pointers. If x
is a live node and node z points to & then we maintain in 2 a pointer z.

We update field f in node v, while simulating the update operation creating version i as
follows. Let = be the live persistent node corresponding to v in the data structure. If z
already contains a value of field f that is associated with version i then we overwrite this
value with the new value. Otherwise, if there is an empty extra field in z then we assign
the new value to this extra field, and mark it as a value associated with original field f in
version i. If f is a pointer field which now points to a node z, we update the corresponding
predecessor pointer in z to point to x. In case all extra fields in x are used we copy z as
follows.

We create a new persistent node y, make the copy pointer of z point to y, store in each
original field in y the most recent value assigned to it, and mark these values with version
stamp ¢. In particular, field f in node y stores its new value marked with version i. For
each pointer field in y we also update the corresponding predecessor pointer to point to y
rather than to z.

Then we have to update each field pointing to x in version ¢ — 1 to point to y in version
i. We follow, in turn, each predecessor pointer in z. Let z be a node pointed to by such a
predecessor pointer. We identify the field pointing to = in z and update its value in version
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i to be y. We also update a predecessor pointer in y to point to z. If the old value of the
pointer to x in z is not marked with version 4 (in particular this means that z has not been
copied) then we try to use an extra field to store the new version-value pair. If there is
no free extra pointer in z we copy z as above. Then we update the field that points to x
to point to y in the new copy of z. This sequence of node copying may cascade, but since
each node is copied at most once?, the simulation of the update step must terminates. In
version 4, y is the live node corresponding to v.

A simple analysis shows that if we use at least as many extra fields as predecessor fields
at each node (i.e. e > p) then the amortized number of nodes that are copied due to a single
update is constant. Intuitively, each time we copy a node we gain e empty extra fields in
the live version that “pay” for the assignments that had to be made to redirect pointers to
the new copy.

A similar simulation called the node splitting method makes a data structure fully persis-
tent with O(1) amortized overhead in time and space. The details however are somewhat
more involved so we only sketch the main ideas. Here, since we need predecessor pointers for
any version® it is convenient to think of the predecessor pointers as part of the ephemeral
data structure, and to apply the simulation to the so called augmented ephemeral data
structure.

We represent each fat node by a list of persistent nodes each of constant size, with twice as
many extra pointers as original fields in the corresponding node of the augmented ephemeral
data structure. The values in the fields of the the persistent nodes are ordered by the version
list. Thus each persistent node is associated with an interval of versions in the version list
and it stores all values of its fields that fall within this interval. The first among these
values is stored in an original field and the following ones occupy extra fields.

The key idea underlying this simulation is to maintain the pointers in the persistent
structure consistent such that when we traverse a pointer valid in version ¢ we arrive at a
persistent node whose valid interval contains version i. More precisely, a value ¢ of a pointer
field must indicate a persistent node whose valid interval contains the valid interval of c.

We simulate an update step to field f, while creating version i from version p(i), as
follows. If there is already a persistent node x containing f marked with version i then
we merely change the value of f in z. Otherwise, let x be the persistent node whose valid
interval contains version i. Let i+ be the version following i in the version list. Assume the
node following = does not have version stamp of i+. We create two new persistent node z’,
and z"”, and insert them into the list of persistent nodes of z, such that z’ follows z, and z"
follows z'. We give node ' version stamp of ¢ and fill all its original fields with their values
at version i. The extra fields in 2’ are left empty. We give 2" version stamp of i+. We fill
the original fields of z' with their values at version i+. We move from the extra fields of x
all values with version stamps following i+ in the version list to z'. In case the node which
follows z in its list has version stamp i+ then z" is not needed.

After this first stage of the update step, values of pointer fields previously indicating =
may be inconsistent. The simulation then continues to restore consistency. We locate all
nodes containing inconsistent values and insert them into a set S. Then we pull out one
node at the time from S and fix its values. To fix a value we may have to replace it with two

4When we copy a node, while creating version i, all the original fields in the new copy have version
stamp 4, if later, during the same update operation, we change one of them then the update will simply
overwrite their value.

5So we cannot simply overwrite a value in a predecessor pointer.
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or more values each valid in a subinterval of the valid interval of the original value. This
increases the number of values that has to be stored at the node so we may have to split the
node. This splitting may cause more values to become inconsistent. So node splitting and
consistency fixing cascades until consistency is completely restored. The analysis is based
on the fact that each node splitting produce a node with sufficiently many empty extra
fields. For further details see [18].

1.3.3 Handling arrays

Dietz [12] describes a general technique for making arrays persistent. In his method, it takes
O(loglog m) time to access the array and O(loglogm) expected amortized time to change
the content of an entry, where m is the total number of updates. The space is linear in m.
We denote the size of the array by n and assume that n < m.

Dietz essentially suggests to think of the array as one big fat node with n fields. The list
of versions-values pairs describing the assignments to each entry of the array is represented
in a data structure of van Emde Boas et. al. [34, 33]. This data structure is made to consume
space linear in the number of items using dynamic perfect hashing [14]. Each version is
encoded in this data structure by its label in the associated Order Maintenance (OM) data
structure. (See Section 1.3.1.)

A problem arises with the solution above since we refer to the labels not solely via order
queries on pairs of versions. Therefore when a label of a version changes by the OM data
structure the old label has to be deleted from the corresponding van Emde Boaz data
structure and the new label has to be inserted instead. We recall that any one of the known
OM data structures consists of two levels. The versions are partitioned into sublists of size
O(logm). Each sublist gets a label and each version within a sublist gets a label. The
final label of a version is the concatenation of these two labels. Now this data structure
supports an insertion in (O(1) time. However this insertion may change the labels of a
constant number of sublists and thereby implicitly change the labels of O(logm) versions.
Reinserting all these labels into the van Emde Boaz structures containing them may take
Q(logmloglogm) time

Dietz suggests to solve this problem by bucketizing the van Emde Boaz data structure.
Consider a list of versions stored in such a data structure. We split the list into buckets of
size O(logm). We maintain the versions in each bucket in a regular balanced search tree
and we maintain the smallest version from each bucket in a van Emde Boaz data structure.
This way we need to delete and reinsert a label of a version into the van Emde Boaz data
structure only when the minimum label in a bucket gets relabeled.

Although there are only O(m/log m) elements now in the van Emde Boaz data structures,
it could still be the case that we relabel these particular elements too often. This can happen
if sublists that get split in the OM data structure contains a particular large number of
buckets’ minima. To prevent that from happening we modify slightly the OM data structure
as follows.

We define a potential to each version which equals 1 if the version is currently not a
minimum in its bucket of its van Emde Boaz data structure and equals loglogm if it is
a minimum in its bucket. Notice that since there are only O(m/logm) buckets’ minima
the total potential assigned to all versions throughout the process is O(m). We partition
the versions into sublists according to their potentials where the sum of the potentials of
the elements in each sublist is O(logm). We assign labels to the sublists and within each
sublists as in the original OM data structure. When we have to split a sublist the work
associated with the split, including the required updates on the associated van Emde Boaz
data structures, is proportional to the increase in the potential of this sublist since it had
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last split.

Since we can model the memory of a Random Access Machine (RAM) as a large array.
This technique of Dietz is in fact general enough to make any data structure on a RAM
persistent with double logarithmic overhead on each access or update to memory.

1.3.4 Making data structures confluently persistent

Finding a general simulation to make a pointer based data structure confluently persistent
is a considerably harder task. In a fully persistent setting we can construct any version by
carrying out a particular sequence of updates ephemerally. This seemingly innocent fact is
already problematic in a confluently persistent setting. In a confluently persistent setting
when an update applies to two versions, one has to produce these two versions to perform
the update. Note that these two versions may originate from the same ancestral version so
we need some form of persistence even to produce a single version. In particular methods
that achieve persistence typically create versions that share nodes. Semantically however,
when an update applied to versions that share nodes we would like the result to be as if we
perform the update on two completely independent copies of the input versions.

In a fully persistent setting if each operation takes time polynomial in the number of
versions then the size of each version is also polynomial in the number of versions. This
breaks down in a confluently persistent setting where even when each operation takes con-
stant time the size of a single version could be exponential in the number of versions. Recall
the example of the linked list mentioned in Section 1.1. It is initialized to contain a single
node and then concatenated with itself n time. The size of the last versions is 2”. It follows
that any polynomial simulation of a data structure to make it confluently persistent must
in some cases represent versions is a compressed form.

Consider the naive scheme to make a data structure persistent which copies the input
versions before each update. This method is polynomial in a fully persistent setting when
we know that each update operation allocates a polynomial (in the number of versions)
number of new nodes. This is not true in a confluently persistent setting as the linked list
example given above shows. Thus there is no easy polynomial method to obtain confluently
persistence at all.

What precisely causes this difficulty in obtaining a confluently persistent simulation ? Lets
assume first a fully persistent setting and the naive scheme mentioned above. Consider a
single node x created during the update that constructed version v. Node z exists in
version v and copies of it may also exist in descendant versions of v. Notice however that
each version derived from v contains only a single node which is either x or a copy of it. In
contrast if we are in a confluently persistent setting a descendant version of v may contain
more than a single copy of z. For example, consider the linked list being concatenated to
itself as described above. Let z be the node allocated when creating the first version. Then
after one catenation we obtain a version which contains two copies of x, after 2 catenations
we obtain a version containing 4 copies of z, and in version n we have 2" copies of .

Now, if we get back to the fat node method, then we can observe that it identifies a node
in a specific version using a pointer to a fat node and a version number. This works since
in each version there is only one copy of any node, and thus breaks down in the confluently
persistent setting. In a confluently persistent setting we need more than a version number
and an address of a fat node to identify a particular node in a particular version.

To address this identification problem Fiat and Kaplan [19] used the notion of pedigree.
To define pedigree we need the following notation. We denote the version DAG by D, and
the version corresponding to vertex v € D by D,. Consider the naive scheme defined above.
Let w be some node in the data structure D,. We say that node w in version v was derived
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from node y in version u if version u was one of the versions on which the update producing
v had been performed, and furthermore node w € D, was formed by a (possibly empty) set
of assignments to a copy of node y € D,,.

Let w be a node in some version D, where D, is produced by the naive scheme. We
associate a pedigree with w, and denote it by p(w). The pedigree, p(w), is a path p =
(po,p1,--.,pr = u) in the version DAG such that there exist nodes wg, w1, ..., wg_1,
wy, = w, where w; is a node of D,,;, wy was allocated in py, and wj; is derived from w;_; for
1 <i < k. We also call wg the seminal node of w, and denote it by s(w). Note that p(w)
and s(w) uniquely identify w among all nodes of the naive scheme.

As an example consider Figure 1.1. We see that version v4 has three nodes (the 1st, 3rd,
and 5th nodes of the linked list) with the same seminal node w{. The pedigree of the 1st
node in D,, is (vg,v1,vs,v4). The pedigree of the 2nd node in D,, is also (vy,v1,v3,v4) but
its seminal node is wg. The pedigree of the 3rd node is (vg, vs,vs,v4). The pedigree of the
4th node is (v, v3, v4) and its seminal node is w(. Similarly the pedigree of the 5th node is
(vo,v2,v4), and the pedigree of the 6th node is (va, v4).

The basic simulation of Fiat and Kaplan is called the full path method and it works as
follows. The data structure consists of a collection of fat nodes. Each fat node corresponds
to an explicit allocation of a node by an update operation or in another words, to some
seminal node of the naive scheme. For example, the update operations of Figure 1.1 performs
3 allocations (3 seminal nodes) labeled wg, wj, and w{, so our data structure will have 3
fat nodes, f(wo), f(wg) and f(wy). The full path method represents a node w of the naive
scheme by a pointer to the fat node representing s(w), together with the pedigree p(w).
Thus a single fat node f represents all nodes sharing the same seminal node. We denote
this set of nodes by N(f). Note that N(f) may contain nodes that co-exist within the same
version and nodes that exist in different versions. A fat node contains the same fields as
the corresponding seminal node. Each of these fields, however, rather than storing a single
value as in the original node stores a dynamic table of field values in the fat node. The
simulation will be able to find the correct value in node w € N(f) using p(w). To specify the
representation of a set of values we need the following definition of an assignment pedigree.

Let p = (po, - ..,pr = u) be the pedigree of a node w € D,. Let wy = w,wr_1,...,wy,
w; € Dy, be the sequence of nodes such that w; € D), is derived from w;—y € D,, ,. This
sequence exists by the definition of node’s pedigree. Let A be a field in w and let j be the
maximum such that there has been an assignment to field A in w; during the update that
created p;. We define the assignment pedigree of a field A in node w, denoted by p(A, w)
to be the pedigree of w;, i.e. p(4,w) = (po,p1,--.,pj)-

In the example of Figure 1.1 the nodes contain one pointer field (named next) and one
data field (named z). The assignment pedigree of x in the 1st node of D,, is simply (vg), the
assignment pedigree of z in the 2nd node of D,, is likewise (vg), the assignment pedigree of
z in the 3rd node of D,, is (vg,vs,v3). Pointer fields also have assignment pedigrees. The
assignment pedigree of the pointer field in the 1st node of D,, is (vg,v1), the assignment
pedigree of the pointer field in the 2nd node of D,, is (vg,v1,v3), the assignment pedigree
of the pointer field of the 3rd node of D,, is (vg, v2), finally, the assignment pedigree of the
pointer field of the 4th node of D,, is (va,v3,v4).

We call the set {p(A,w) | w € N(f)} the set of all assignment pedigrees for field A in a
fat note f, and denote it by P(A, f). The table that represents field A in fat node f contains
an entry for each assignment pedigree in P(A, f). The value of a table entry, indexed by an
assignment pedigree p = (po, p1, . - -, Pp;), depends on the type of the field as follows. If A is

a data field then the value stored is the value assigned to A in the node w; € D,, whose
pedigree is p. If A is a pointer field then let w be the node pointed to by field A after the
assignment to A in w;. We store the pedigree of w and the address of the fat node that
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FIGURE 1.1: A DAG of five versions. In each circle we show the corresponding update
operation and the resulting version. Nodes with the same color originate from the same
seminal node. The three gray nodes in version D,, all have the same seminal node (wy),
and are distinguished by their pedigrees (vg,v1,v3,v4), (vo,v2,v3,v4), and (vg, va, v4).

represents the seminal node of w.

An access pointer to a node w in version v is represented by a pointer to the fat node
representing the seminal node of w and the pedigree of w.

In Figure 1.2 we give the fat nodes of the persistent data structure given in Figure 1.1.
For example, the field next has three assignments in nodes of N(f(w()). Thus, there are
three assignment pedigrees in P(next, f(wy)):

1. (vg) — allocation of wy( in version D,, and default assignment of null to next.

2. {(vg,v1) — inverting the order of the linked list in version D,, and thus assigning
next a new value. The pointer is to a node whose pedigree is (vg,v1) and whose
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FIGURE 1.2: The fat nodes for the example of Figure 1.1.

seminal node is wg. So we associate the value ({vg,v1), f(wq)) with (vg,v1).

3. <U0, 1)2)

point to this new node. The pedigree of w

((v2), f(wg)) with (vo, va).

We see all three entries in the table for next in the fat node f(wy) (Figure 1.2). Similarly,
we give the table for field z in f(w() as well as the tables for both fields in fat nodes f(wyp)

and f(w().

allocating a new node, wy, in version D,,, and assigning next to
is (v2) so we associate the value

When we traverse the data structure we are pointing to some fat node f and hold a

pedigree ¢ of some node w whose seminal node corresponds to f and we would like to
retrieve the value of field A in node w from the table representing field A in f. We do that
as follows. First we identify the assignment pedigree p(A, w) of field A in node w. This is
the longest pedigree which is a prefix of ¢ and has an entry in this table. In case A is a data
field, the value we are after is simply the value associated with p(A, w). However if A is a
pointer field then the value stored with p(A, w) may not be the value of A in w. This value
identifies a node in the version where the assignment occurred, whereas we are interested
in a node in the version of w where this pointer field points to.
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Let ¢ = {qo,- .., qx) and let p(A,w) = {(qo, 1, --.,q;). Let the value of p(A4,w) be (¢, f),
where ¢ is the pedigree of the target node in D, and f is the fat node representing the
seminal node of this target node. The nodes identified by the pedigrees p(A,w) and ¢ were

copied in versions g;11, ..., g without any assignment made to field A in the nodes derived
from the node whose pedigree is p(A, w). Thus the pedigree of the target node of field A of
node w in Dy, is t|[{gj+1,--.,qx), where || represents concatenation.

It follows that we need representations for pedigrees and the tables representing field
values that support an efficient implementation of the followings.

1. Given a pedigree ¢ find the longest prefix of ¢ stored in a table.
2. Given a pedigree ¢, replace a prefix of ¢ with another pedigree p.

3. To facilitate updates we also need to be able to add a pedigree to a table repre-
senting some field with a corresponding value.

In their simplest simulation Fiat and Kaplan suggested to represent pedigrees as linked
lists of version numbers, and to represent tables with field values as tries. Each assignment
pedigree contained in the table is represented by a path in the corresponding trie. The last
node of the path stores the associated value. Nodes in the trie can have large degrees so for
efficiency we represent the children of each node in a trie by a splay tree.

Let U be the total number of assignments the simulation performs and consider the update
creating version v. Then with this implementation each assignment performed during this
update requires O(d(v)) words of size O(logl{) bits and takes O(d(v) + logl), where d(v)
is the depth of v in the DAG. Field retrieval also takes O(d(v) + logl{) time.

The second method suggested by Fiat and Kaplan is the compressed path method. The
essence of the compressed path method is a particular partition of our DAG into disjoint
trees. This partition is defined such that every path enters and leaves any specific tree at
most once. The compressed path method encodes paths in the DAG as a sequence of pairs of
versions. Each such pair contains a version where the path enters a tree T' and the version
where the path leaves the tree T'. The length of each such representation is O(e(D)).°
Each value of a field in a fat node is now associated with the compressed representation
of the path of the node in N(f) in which the corresponding assignment occurred. A key
property of these compressed path representations is that they allow easy implementation
of the operations we need to perform on pedigree, like replacing a prefix of a pedigree
with another pedigree when traversing a pointer. With the compressed path method each
assignment requires up to O(e(D)) words each of O(log/) bits. Searching or updating the
trie representing all values of a field in a fat node requires O(e(D) + logl{) time. For the
case where the DAG is a tree this method degenerates to the fat node simulation of [18].

Fiat and Kaplan also suggested how to use randomization to speed up their two basic
methods at the expense of (slightly) larger space expansion and polynomially small error
probability. The basic idea is encode each path (or compressed path) in the DAG by an
integer. We assign to each version a random integer, and the encoding of a path p is simply
the sum of the integers that correspond to the versions on p. Each value of a field in a fat
node is now associated with the integer encoding the path of the node in N(f) in which the
corresponding assignment occurred. To index the values of each field we use a hash table
storing all the integers corresponding to these values.

6Recall that e(D) is the logarithm of the maximum number of different paths from the root of the DAG
to any particular version.
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To deal with values of pointer fields we have to combine this encoding with a represen-
tation of paths in the DAG (or compressed paths) as balanced search trees, whose leaves
(in left to right order) contain the random integers associated with the vertices along the
path (or compressed path). This representation allows us to perform certain operations on
these paths in logarithmic (or poly-logarithmic) time whereas the same operations required
linear time using the simpler representation of paths in the non-randomized methods.

1.4 Making specific data structures more efficient

The purely functional deques of Kaplan and Tarjan [23], the confluently persistent deques

of Kaplan, Okasaki, and Tarjan [21], the purely functional heaps of Brodal and Okasaki [6],

and the purely functional finger search trees of Kaplan and Tarjan [22], are all based on a
simple and useful mechanism called redundant counters, which to the best of our knowledge
first appeared in lecture notes by Clancy and Knuth [9]. In this section we describe what
redundant counters are, and demonstrate how they are used in simple persistent deques
data structure.

A persistent implementation of deques support the following operations:

q' = push(z,q): Inserts an element z to the beginning of the deque ¢ returning a new deque
¢’ in which z is the first element followed by the elements of q.

(z,q') = pop(q): Returns a pair where z is the first element of ¢ and ¢’ is a deque containing
all elements of ¢ but .

q' = Inject(zx,q): Inserts an element x to the end of the deque ¢ returning a new deque ¢’
in which z is the last element preceded by the elements of q.

(z,q') = eject(q): Returns a pair where z is the last element of ¢ and ¢’ is a deque containing
all elements of ¢ but .

A stack supports only push and pop, a queue supports only push and eject. Catenable
deques also support the operation

q = catenate(qr,q2): Returns a queue ¢ containing all the elements of ¢; followed by the
elements of go.

Although queues, and in particular catenable queues, are not trivial to make persistent,
stacks are easy. The regular representation of a stack by a singly linked list of nodes, each
containing an element, ordered from first to last, is in fact purely functional. To push an
element onto a stack, we create a new node containing the new element and a pointer to
the node containing the previously first element on the stack. To pop a stack, we retrieve
the first element and a pointer to the node containing the previously second element.

Direct ways to make queues persistent simulate queues by stacks. One stack holds ele-
ments from the beginning of the queue and the other holds elements from its end. If we
are interested in fully persistence this simulation should be real time and its details are not
trivial. For a detailed discussion see Kaplan and Tarjan [23] and the references there.

Kaplan and Tarjan [23] described a new way to do a simulation of a deque with stacks.
They suggest to represent a deque by a recursive structure that is built from bounded-size
deques called buffers. Buffers are of two kinds: prefizes and suffizes. A non-empty deque ¢
over a set A is represented by an ordered triple consisting of a prefix, prefiz(q), of elements
of A, a child deque, child(q), whose elements are ordered pairs of elements of A, and a
suffir, suf fiz(q), of elements of A. The order of elements within ¢ is the one consistent
with the orders of all of its component parts. The child deque child(q), if non-empty, is
represented in the same way. Thus the structure is recursive and unwinds linearly. We
define the descendants {child"’( q)} of deque d in the standard way, namely child’(q) = q
and child™™ (q) = child(child' (q)) for i > 0 if child' (q) is non-empty.
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Observe that the elements of ¢ are just elements of A, the elements of child(q) are pairs
of elements of A, the elements of child(child(q)) are pairs of pairs of elements of A, and so
on. One can think of each element of childi(q) as being a complete binary tree of depth 7,
with elements of A at its 2! leaves. One can also think of the entire structure representing
q as a stack (of ¢ and its descendants), each element of which is prefix-suffix pair. All the
elements of ¢ are stored in the prefixes and suffixes at the various levels of this structure,
grouped into binary trees of the appropriate depths: level i contains the prefix and suffix
of child'(g). See Figure 1.3.

[¢] [¢]
o]
o @ ()

FIGURE 1.3: Representation of a deque of elements over A. Each circle denotes a deque
and each rectangle denotes a buffer. Squares correspond to elements from A which we
denote by numbers and letters. Each buffer contains 0, 1, or 2 elements. Three versions
are shown Vi, V5, and V3. Version V5 was obtained from V; by injecting the element f.
Version V3 obtained from version V5, by injecting the element g. The latter inject triggered
two recursive injects into the child and grandchild deques of V;. Note that identical binary
trees and elements are represented only once but we draw them multiple times to avoid
cluttering of the figure.

Because of the pairing, we can bring two elements up to level ¢ by doing one pop or eject
at level ¢ 4+ 1. Similarly, we can move two elements down from level ¢ by doing one push or
inject at level ¢ + 1. This two-for-one payoff leads to real-time performance.

Assume that each prefix or suffix is allowed to hold 0, 1, or 2 elements, from the beginning
or end of the queue, respectively. We can implement ¢' = push(z, q) as follows. If the prefix
of ¢ contains 0 or 1 elements we allocate a new node to represent ¢’ make its child deque
and its suffix identical to the child and suffix of ¢, respectively. The prefix of ¢’ is a newly
allocated prefix containing x and the element in the prefix of g, if the prefix of ¢ contained
one element. We return a pointer the new node which represents ¢'. For an example
consider version V5 shown in Figure 1.3 that was obtained from version V; by a case of
inject symmetric to the case of the push just described.
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The hard case of the push is when the prefix of ¢ already contains two elements. In
this case we make a pair containing these two elements and push this pair recursively into
child(q). Then we allocate a new node to represent ¢', make its suffix identical to the suffix
of g, make the deque returned by the recursive push to child(q) the child of ¢', and make
the prefix of ¢’ be a newly allocated prefix containing . For an example consider version
V3 shown in Figure 1.3 that was obtained from version V5 by a recursive case of inject
symmetric to the recursive case of the push just described. The implementations of pop
and eject is symmetric.

This implementation is clearly purely functional and therefore fully persistent. However
the time and space bounds per operation are O(logn). The same bounds as one gets by using
search trees to represent the deques with the path copying technique. These logarithmic
time bounds are by far off from the ephemeral O(1) time and space bounds.

Notice that there is a clear correspondence between this data structure and binary coun-
ters. If we think of a buffer with two elements as the digit 1, and of any other buffer as the
digit 0, then the implementation of push(q) is similar to adding one to the binary number
defined by the prefixes of the queues child'(q). It follows that if we are only interested in
partially persistent deques then this implementation has O(1) amortized time bound per
operation (see the discussion of binary counters in the next section). To make this simu-
lation efficient in a fully persistent setting and even in the worst case, Kaplan and Tarjan
suggested to use redundant counters.

1.4.1 Redundant binary counters

To simplify the presentation we describe redundant binary counters, but the ideas carry
over to any basis. Consider first the regular binary representation of an integer i. To obtain
from this representation the representation of 7 + 1 we first flip the rightmost digit. If we
flipped a 1 to 0 then we repeat the process on the next digit to the left. Obviously, this
process can be long for some integers. But it is straightforward to show that if we carry out
a sequence of such increments starting from zero then on average only a constant number
of digits change per increment.” Redundant binary representations (or counters as we will
call them) address the problem of how to represent i so we can obtain a representation of
i + 1 while changing only a constant number of digits in the worst case.

A redundant binary representation, d, of a non-negative integer x is a sequence of digits
dpy ... do, with d; € {0,1,...,2}, such that z = Y"1 | d;2". We call d regular if, between
any two digits equal to 2, there is a 0, and there is a 0 between the rightmost 2 and the least
significant digit. Notice that the traditional binary representation of each integer (which
does not use the digit 2) is regular. In the sequel when we refer to a regular representation
we mean a regular redundant binary representation, unless we explicitly state otherwise.

Suppose we have a regular representation of i. We can obtain a regular representation of
i+ 1 as follows. First we increment the rightmost digit. Note that since the representation
of i is regular, its rightmost digit is either 0 or 1. So after the increment the rightmost digit
is either 1 or 2 and we still have a redundant binary representation for ¢ + 1. Our concern
is that this representation of 7 + 1 may not be regular. However, since the representation
of ¢ we started out with was regular the only violation to regularity that we may have in
the representation of i + 1 is lacking a 0 between the rightmost 2 and the least significant

"The rightmost digit changes every increment, the digit to it left changes every other operation, and so
on.
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digit. It is easy to check that between any two digits equal to 2, there still is a 0, by the
regularity of i.

We can change the representation of i + 1 to a representation which is guaranteed to be
regular by a simple fiz operation. A fiz operation on a digit d; = 2 increments d;;1 by 1
and sets d; to 0, producing a new regular representation d’' representing the same number
as d.® If after incrementing the rightmost digit we perform a fix on the rightmost 2 then
we switch to another representation of ¢ + 1 that must be regular. We omit the proof here
which is straightforward.

It is clear that the increment together with the fix that may follow change at most three
digits. Therefore redundant binary representations allow to perform an increment while
changing constantly many digits. However notice that in any application of this numbering
system we will also need a representation that allows to get to the digits which we need to
fix efficiently. We show one such representation in the next section.

These redundant representations can be extended so that decrement changes only a con-
stant number of digits, or even more generally so that we can increment or decrement any
digit (add or subtract 2') while changing a constant number of other digits. These additional
properties of the counters were exploited by other applications (see e.g. [22, 24].

1.4.2 Persistent deques

Kaplan and Tarjan use this redundant binary system to improve the deque implementation
we described above as follows. We allow each of the prefixes and suffixes to contain between
0 and 5 elements. We label each buffer, and each deque, by one of the digits 0, 1, and 2. We
label a buffer 0 if it has two or three elements, we label it 1 if it has one or four elements,
and we label it 2 if it has zero or five elements. Observe that we can add one element to
or delete one element from a buffer labeled 0 or 1 without violating its size constraint: A
buffer labeled 0 may change its label to 1, and a buffer labeled 1 may change its label to 2.
(In fact a 1 can also be changed to 0 but this may not violate regularity.) The label of a
deque is the larger among the labels of its buffers, unless its child and one of its buffers are
empty, in which case the label of the deque is identical to the label of its nonempty buffer.

This coloring of the deques maps each deque to a redundant binary representation. The
least significant digit of this representation is the digit of ¢, the next significant digit is
the digit of child(q), and, in general, the i'" significant digit is the digit corresponding to
child'(q) if the latter is not empty. We impose an additional constraint on the deques and
require that the redundant binary representation of any top-level deque is regular.

A regular top-level deque is labeled 0 or 1 which implies that both its prefix and its suffix
are labeled 0 or 1. This means that any deque operation can be performed by operating on
the appropriate top-level buffer. Suppose that the operation is either a push or a pop, the
case of inject and eject is symmetric. We can construct the resulting queue ¢' by setting
child(q") = child(q) and suf fix(q') = suf fiz(q). The prefix of ¢' is a newly allocated buffer
that contains the elements in prefiz(q) together with the new element in case of push or
without the first element in case of pop. Clearly all these manipulations take constant time.

The label of ¢', however, may be one larger than the label of q. So the redundant binary
representation corresponding to ¢’ is either the same as the redundant binary representation
of ¢ in which case it is regular, or it is obtained from the redundant binary representation of
g by incrementing the least significant digit. (The least significant digit can also decrease in

8We use the fiz only when we know that d;11 is either 0 or 1.
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which case regularity is also preserved.) This corresponds to the first step in the increment
procedure for redundant regular representations described in the previous section.

To make the redundant binary representation of ¢’ regular we may have to apply a fix
operation. Let i be the minimum such that child’(q') is labeled 2. If for all j < i, child’(q')
is labeled 1 then the fix has to change the label of child(q') to 0 and increment the label
of child™+!(q").

Fortunately, we have an appropriate interpretation for such a fix. Assume child™*!(q")
have a non-empty child. (We omit the discussion of the case where child*1(q') have an
empty child which is similar.) We know that the label of child"*!(q') is either 0 or 1 so
neither of its buffers is empty or full. If the prefix of child'(¢') has at least four elements we
eject 2 of these elements and push them as a single pair to the prefix of child*!(q'). If the
prefix of child'(q') has at most one element we pop a pair from the prefix of child*!(q")
and inject the components of the pair into the prefix of child'(q'). This makes the prefix
of child'(q') containing either two or three elements. Similarly by popping a pair from or
pushing a pair to the suffix of child(q'), and injecting a pair to or ejecting a pair from the
suffix of child'™'(q') we make the suffix of childi(q') containing two or three elements. As
a result the label of child'(q') and its two buffers becomes 0 while possibly increasing the
label of one or both buffers of child"*!(q') and thereby the label of child*!(q') as well.

There is one missing piece for this simulation to work efficiently. The topmost deque
labeled 2 may be arbitrarily deep in the recursive structure of ¢’, since it can be separated
from the top level by many deques labeled 1. To implement the fix efficiently we have to be
able to find this deque fast and change it in a purely functional way by copying the deques
that change without having to copy all their ancestors deques.

For this reason we do not represent a deque in the obvious way, as a stack of prefix-suffix
pairs. Instead, we break this stack up into substacks. There is one substack for the top-
level deque and one for each descendant deque labeled 0 or 2 not at the top level. Each
substack consists of a top-level, or a deque labeled 0, or a deque labeled 2 and all consecutive
proper descendant deques labeled 1. We represent the entire deque by a stack of substacks
of prefix-suffix pairs using this partition into substacks. This can be realized with four
pointers per each node representing a deque at some level. Two of the pointers are to the
prefix and suffix of the deque. One pointer is to the node for the child deque if this deque
is non-empty and labeled 1. One pointer is to the node of the nearest proper descendant
deque not labeled 1, if such a deque exists and ¢ itself is not labeled 1 or top-level. See
Figure 1.4.

A single deque operation will require access to at most the top three substacks, and to
at most the top two elements in any such substack. The label changes caused by a deque
operation produce only minor changes to the stack partition into substacks, changes that
can be made in constant time. In particular, changing the label of the top-level deque does
not affect the partition into substacks. Changing the label of the topmost deque which is
labeled 2 to 0 and the label of its child from 1 to 2 splits one substack into its first element,
now a new substack, and the rest. This is just a substack pop operation. Changing the label
of the topmost deque which is labeled 2 to 0 and the label of its child from 0 to 1 merges a
singleton substack with the substack under it. This is just a substack push operation.

To add catenation, Kaplan and Tarjan had to change the definition of the data structure
and allow deques to be stored as components of elements of recursive deques. The redundant,
binary numbering system, however, still plays a key role. To represent a catenable deque,
Kaplan and Tarjan use noncatenable deques as the basic building blocks. They define a
triple over a set A recursively as a prefix of elements of A, a possibly empty deque of triples
over A, and a suffix of elements of A, where each prefix or suffix is a noncatenable deque.
Then, they represent a catenable deque of elements from A by either one or two triples over
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| prefix [1 suffix |
prefix [1 suffix |
[a] [b] [d] [e] 9]
prefix [0 suffix |
prefix suffix
prefix [1 suttix

FIGURE 1.4: Pointer representation of stack of substacks structure. Each circle correspond
to a deque and it is marked by its label. Each buffer is a rectangle which is marked by
its label. Triangles denote complete binary trees of elements whose depths depend on the
level. This particular queue is represented by a stack of three substacks.

A. The underlying skeleton of this structure is a binary tree (or two binary trees) of triples.
The redundant binary number system is extended so that it can distribute work along these
trees by adding an extra digit.

Kaplan, Okasaki, and Tarjan [21] simplified these data structures at the expense of making
the time bounds amortized rather than worst case and using assignment, thus obtaining a
confluently persistent data structure which is not purely functional. The key idea underlying
their data structure is to relax the rigid constraint of maintaining regularity. Instead, they
suggest to “improve” the representation of a deque ¢ with full or empty prefix when we try
to push or pop an element from it. Similarly, with full or empty suffix. This improvement
in the representation of ¢ is visible to all deques that contain ¢ as a subdeque at some
level and prevents from pushing into deques with full prefixes or popping from deques with
empty prefixes from happening too often.
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More specifically, say we push into a deque ¢ with full prefix. Then we first eject two
element from this prefix, make a pair containing them, and push the pair recursively into
child(q). Let the result of the recursive push be child'(g). We then change the representation
of ¢ so that it has a new prefix which contains all the elements in the prefix of ¢ but the
two which we ejected, and its child deque is child'(gq). The suffix of ¢ does not change.
Finally we perform the push into ¢ by creating a new queue ¢’ that has the same suffix
and child deque as ¢, but has a new prefix that contains the elements in the prefix of ¢
together with the new element. A careful but simple analysis shows that each operation in
this implementation takes O(1) amortized time. By extending this idea, Kaplan, Okasaki,
and Tarjan managed to construct catenable deques using only constant size buffers as the
basic building blocks.

1.5 Concluding remarks and open questions

Much progress have been made on persistent data structures since the seminal paper of
Driscoll et. al. [18]. This progress has three folds: In developing general techniques to make
any data structure persistent, in making specific data structures persistent, and in emerg-
ing algorithmic applications. Techniques developed to address these challenges sometimes
proved useful for other applications as well.

This algorithmic field still comprise intriguing challenges. In developing general tech-
niques to make data structures persistent, a notable challenge is to find a way to make
the time slowdown of the node splitting method worst case. Another interesting research
track is how to restrict the operations that combine versions in a confluently persistent set-
ting so that better time bounds, or simpler simulations, are possible. We also believe that
the techniques and data structures developed in this field would prove useful for numerous
forthcoming applications.
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