
www.manaraa.com

1Persistent data strutures
Haim KaplanTel Aviv University

1.1 Introdution : 1-11.2 Algorithmi appliations of persistent datastrutures : 1-41.3 General tehniques for making data struturespersistent : 1-8The fat node method � Node opying and nodesplitting � Handling arrays � Making data struturesonuently persistent1.4 Making spei� data strutures more eÆient : : : : 1-18Redundant binary ounters � Persistent deques1.5 Conluding remarks and open questions : : : : : : : : : : : 1-241.1 IntrodutionThink of the initial on�guration of a data struture as version zero, and of every subsequentupdate operation as generating a new version of the data struture. Then a data strutureis alled persistent if it supports aess to all versions and it is alled ephemeral otherwise.The data struture is partially persistent if all versions an be aessed but only the newestversion an be modi�ed. The struture is fully persistent if every version an be bothaessed and modi�ed. The data struture is onuently persistent if it is fully persistentand has an update operation whih ombines more than one version. Let the version graphbe a direted graph where eah node orresponds to a version and there is an edge from nodeV1 to a node V2 if and only of V2 was reated by an update operation to V1. For partiallypersistent data struture the version graph is a path; for fully persistent data struture theversion graph is a tree; and for onuently persistent data struture the version graph is adireted ayli graph (DAG).A notion related to persistene is that of purely funtional data strutures. (See Chapter46 by Okasaki in this handbook.) A purely funtional data struture is a data struturethat an be implemented without using an assignment operation at all (say using just thefuntions ar, dr, and ons, of pure lisp). Suh a data struture is automatially per-sistent. The onverse, however, is not true. There are data strutures whih are persistentand perform assignments.Sine the seminal paper of Drisoll, Sarnak, Sleator, and Tarjan (DSST) [18℄, and over thepast �fteen years, there has been onsiderable development of persistent data strutures.Persistent data strutures have important appliations in various areas suh as funtionalprogramming, omputational geometry and other algorithmi appliation areas.The researh on persistent data strutures splits into two main traks. The �rst trak is ofdesigning general transformations that would make any ephemeral data struture persistent0-8493-8597-0/01/$0.00+$1.50 2001 by CRC Press, LLC 1-1

www.manaraa.com

1-2while introduing low overhead in spae and time. The seond trak is on how to makespei� data strutures, suh as lists and searh trees, persistent. The seminal work ofDSST mainly addresses the question of �nding a general transformation to make any datastruture persistent. In addition DSST also address the speial ase of making searh treespersistent in partiular. For searh trees they obtain a result whih is better than what onegets by simply applying their general transformation to, say, red-blak trees.There is a naive sheme to make any data struture persistent. This sheme performs theoperations exatly as they would have been performed in an ephemeral setting but beforeeah update operation it makes new opies of all input versions. Then it performs theupdate on the new opies. This sheme is obviously ineÆient as it takes time and spaewhih is at least linear in the size of the input versions.When designing an eÆient general transformation to make a data struture persistentDSST get started with the so alled fat node method . In this method you allow eah �eldin the data struture to store more than one value, and you tag eah value by the versionwhih assigned it to the �eld. This method is easy to apply when we are interested only in apartially persistent data struture. But when the target is a fully persistent data struture,the lak of linear order on the versions already makes navigation in a naive implementationof the fat node data struture ineÆient. DSST manage to limit the overhead by linearizingthe version tree using a data struture of Dietz and Sleator so we an determine fast whetherone version preedes another in this linear order.Even when implemented arefully the fat node method has logarithmi (in the numberof versions) time overhead to aess or modify a �eld of a partiular node in a partiularversion. To redue this overhead DSST desribed two other methods to make data struturespersistent. The simpler one is the node opying method whih is good to obtain partiallypersistent data strutures. For obtaining fully persistent data strutures they suggest thenode splitting method. These methods simulate the fat node method using nodes of onstantsize. They show that if nodes are large enough (but still of onstant size) then the amountof overhead is onstant per aess or update of a �eld in the ephemeral data struture.These general tehniques suggested by DSST have some limitations. First, all thesemethods, inluding even the fat node method, fail to work when the data struture hasan operation whih ombines more than one version, and onuent persistene is desired.Furthermore, the node splitting and node opying methods apply only to pointer based datastrutures (no arrays) where eah node is of onstant size. Sine the simulation has to addreverse pointers to the data struture the methods require nodes to be of bounded indegreeas well. Last, the node oping and the node splitting tehniques have O(1) amortizedoverhead per update or aess of a �eld in the ephemeral data struture. DSST left openthe question of how to make this overhead O(1) in the worst ase.These limitations of the transformations of DSST were addressed by subsequent work.Dietz and Raman [13℄ and Brodal [5℄ addressed the question of bounding the worst aseoverhead of an aess or an update of a �eld. For partial persistene Brodal gives a wayto implement node oping suh that the overhead is O(1) in the worst ase. For fullypersistene, the question of whether there is a transformation with O(1) worst ase overheadis still unresolved.The question of making data strutures that use arrays persistent with less than loga-rithmi overhead per step has been addressed by Dietz [12℄. Dietz shows how to augmentthe fat node method with a data struture of van Emde Boaz, Kaas, and Zijlstra [34, 33℄to make an eÆient fully persistent implementation of an array. With this implementation,if we denote by m the number of updates, then eah aess takes O(log logm) time, anupdate takes O(log logm) expeted amortized time and the spae is linear in m. Sine wean model the memory of a RAM by an array, this transformation of Dietz an make any

www.manaraa.com

Persistent data strutures 1-3data struture persistent with slowdown double logarithmi in the number of updates tomemory.The question of how to make a data struture with an operation that ombines versionsonuently persistent has been reently addressed by Fiat and Kaplan [19℄. Fiat and Kaplanpoint out the fundamental di�erene between fully persistene and onuently persistene.Consider the naive sheme desribed above and assume that eah update operation reatesonstantly many new nodes. Then, as long as no update operation ombines more thanone version, the size of any version reated by the naive sheme is linear in the numberof versions. However when updates ombine versions the size of a single version an beexponential in the number of versions. This happens in the simple ase where we update alinked list by onatenating it to itself n times. If the initial list is of size one then the �nallist after n onatenations is of size 2n.Fiat and Kaplan prove by simple information theoreti argument that for any generalredution to make a data struture onuently persistent there is a DAG of versions whihannot be represented using only onstant spae per assignment. Spei�ally, Fiat andKaplan de�ne the e�etive depth of the DAG whih is the logarithm of the maximum numberof di�erent paths from the root of the DAG to any partiular vertex. They show that thenumber of bits that may be required for assignment is at least as large as the e�etive depthof the DAG. Fiat and Kaplan also give several methods to make a data struture onuentlypersistent. The simplest method has time and spae overhead proportional to the depthof the DAG. Another method has overhead proportional to the e�etive depth of the DAGand degenerate to the fat node method when the DAG is a tree. The last method reduethe time overhead to be polylogarithmi in either the depth of the DAG or the e�etivedepth of the DAG at the ost of using randomization and somewhat more spae.The work on making spei� data strutures persistent has started even prior to the workof DSST. Dobkin and Munro [16℄ onsidered a persistent data struture for omputing therank of an objet in an ordered set of elements subjet to insertions and deletions. Overmars[29℄ improved the time bounds of Dobkin and Munro and further redued the storage forthe ase where we just want to determine whether an element is in the urrent set or not.Chazelle [8℄ onsidered �nding the predeessor of a new element in the set. As we alreadymentioned DSST suggest two di�erent ways to make searh trees persistent. The moreeÆient of their methods has O(logn) worst ase time bound and O(1) worst ase spaebound for an update.A onsiderable amount of work has been devoted to the question of how to make on-atenable double ended queues (deques) onuently persistent. Without atenation, onean make deques fully persistent either by the general tehniques of DSST or via real-timesimulation of the deque using staks (see [23℄ and the referenes there). One atenation isadded, the problem of making staks or deques persistent beomes muh harder, and themethods mentioned above fail. A straightforward use of balaned trees gives a representa-tion of persistent atenable deques in whih an operation on a deque or deques of total size ntakes O(logn) time. Drisoll, Sleator, and Tarjan [17℄ ombined a tree representation withseveral additional ideas to obtain an implementation of persistent atenable staks in whihthe kth operation takes O(log log k) time. Buhsbaum and Tarjan [7℄ used a reursive de-omposition of trees to obtain two implementations of persistent atenable deques. The �rsthas a time bound of 2O(log� k) and the seond a time bound of O(log� k) for the kth operation,where log� k is the iterated logarithm, de�ned by log(1) k = log2 k; log(i) k = log log(i�1) kfor i > 1, and log� k = minfi j log(i) k � 1g.Finally, Kaplan and Tarjan [23℄ gave a real-time, purely funtional (and hene onuentlypersistent) implementation of deques with atenation in whih eah operation takes O(1)

www.manaraa.com

1-4time in the worst ase. A related struture whih is simpler but not purely funtionaland has only amortized onstant time bound on eah operation has been given by Kaplan,Okasaki, and Tarjan [21℄. A key ingredient in the results of Kaplan and Tarjan and theresult of Kaplan, Okasaki, and Tarjan is an algorithmi tehnique related to the redundantdigital representations devised to avoid arry propagation in binary ounting [9℄. If removingelements from one side of the deque is disallowed Okasaki [28℄ suggested another onuentlypersistent implementation with O(1) time bound for every operation. This tehnique isrelated to path reversal tehnique whih is used in some union-�nd data strutures [32℄.Searh trees also support atenation and split operations [31℄ and therefore onuentpersistene implementation of searh trees is natural to ask for. Searh tree an be madepersistent and even onuently persistent using the path opying tehnique [18℄. In pathoping you opy every node that hanges while updating the searh tree and its anestors.Sine updates to searh trees a�et only a single path, this tehnique results in opying atmost one path and thereby osts logarithmi time and spae per update. Making �ngersearh trees onuently persistent is more of a hallenge, as we want to prevent the updateoperation to propagate up on the leftmost and rightmost spines of the tree. This allowsto make an update at distane d from the beginning or end of the list in O(log d) time.Kaplan and Tarjan [22℄ used the redundant ounting tehnique to make �nger searh treeonuently persistent. Using the same tehnique they also managed to redue the time(and spae) overhead of atenation to be O(log logn) where n is the number of elements inthe larger tree.The struture of the rest of this paper is as follows. Setion 1.2 desribes few algorithmsthat use persistent data strutures to ahieve their best time or spae bounds. Setion1.3 surveys the general methods to make data strutures persistent. Setion 1.4 gives thehighlights underlying persistent onatenable deques. We onlude in Setion 1.5.1.2 Algorithmi appliations of persistent data struturesThe basi onept of persistene is general and may arise in any ontext where one maintainsa reord of history for bakup and reovery, or for any other purpose. However, the mostremarkable onsequenes of persistent data strutures are spei� algorithms that ahievetheir best time or spae omplexities by using a persistent data struture. Most suhalgorithms solve geometri problems but there are also examples from other �elds. In thissetion we desribe few of these algorithms.The most famous geometri appliation is the algorithm for planar point loation bySarnak and Tarjan [30℄ that triggered the development of the whole area. In the planarpoint loation problem we are given a subdivision of the Eulidean plane into polygonsby n line segments that interset only at their endpoints. The goal is to preproess theseline segments and build a data struture suh that given a query point we an eÆientlydetermine whih polygon ontains it. As ommon in this kind of omputational geometryproblems, we measure a solution by three parameters: The spae oupied by the datastruture, the preproessing time, whih is the time it takes to build the data struture,and the query time.Sarnak and Tarjan suggested the following solution (whih builds upon previous ideas ofDobkin and Lipton [15℄ and Cole [10℄). We partition the plane into vertial slabs by drawinga vertial line through eah vertex (intersetion of line segments) in the planar subdivision.Notie that the line segments of the subdivision interseting a slab are totally ordered. Nowit is possible to answer a query by two binary searhes. One binary searh loates the slabthat ontains the query, and another binary searh loates the segment preeding the query

www.manaraa.com

Persistent data strutures 1-5point within the slab. If we assoiate with eah segment within a slab, the polygon justabove it, then we have loated the answer to the query. If we represent the slabs by a binarysearh tree from left to right, and the segments within eah slab by a binary searh treesorted from bottom to top, we an answer a query in O(logn) time.1 However if we builda separate searh tree for eah slab then the worst ase spae requirement is
(n2), when
(n) lines interset
(n) slabs.The key observation is that the sets of line segments interseting adjaent slabs are similar.If we have the set of one partiular slab we an obtain the set of the slab to its right bydeleting segments that end at the boundary between these slabs, and inserting segmentsthat start at that boundary. As we sweep all the slabs from left to right we get that intotal there are n deletions and n insertions; one deletion and one insertion for every linesegment. This observation redues the planar point loation to the problem of maintainingpartially persistent searh trees. Sarnak and Tarjan [30℄ suggested a simple implementationof partially persistent searh tree where eah update takes O(logn) amortized time andonsumes O(1) amortized spae. Using these searh trees they obtained a data struturefor planar point loation that requires O(n) spae, takes O(n logn) time to build, and ananswer eah query in O(logn) time.The algorithm of Sarnak and Tarjan for planar point loation in fat suggests a generaltehnique for transforming a 2-dimensional geometri searh problem into a persistent datastruture problem. Indeed several appliations of this tehnique have emerged sine Sarnakand Tarjan published their work [3℄. As another example onsider the problem of 3-sidedrange searhing in the plane. In this problem we preproess a set of n points in the planeso given a triple (a; b;) with a � b we an eÆiently reports all points (x; y) 2 S suhthat a � x � b, and y � . The priority searh tree of MCreight [26℄ yields a solution tothis problem with O(n) spae, O(n logn) preproessing time, and O(logn) time per query.Using persistent data struture, Boroujerdi and Moret [3℄ suggest the following alternative.Let y1 � y2 � � � � � yn be the y-oordinates of the points in S in sorted order. For eahi, 1 � i � n we build a searh tree ontaining all i points (x; y) 2 S where y � yi, andassoiate that tree with yi. Given this olletion of searh tree we an answer a query(a; b;) in O(logn) time by two binary searhes. One searh uses the y oordinate of thequery point to �nd the largest i suh that yi � . Then we use the searh tree assoiatedwith yi to �nd all points (x; y) in it with a � x � b. If we use partially persistent searhtrees then we an build the trees using n insertions so the spae requirement is O(n), andthe preproessing time is O(n logn).This tehnique of transforming a 2-dimensional geometri searh problem into a persistentdata struture problem require only a partially persistent data struture. This is sine weonly need to modify the last version while doing the sweep. Appliations of fully persistentdata strutures are less ommon. However few interesting ones do exists.One suh algorithm that uses a fully persistent data struture is the algorithm of Alstrupet. al. for the binary dispathing problem [1℄. In objet oriented languages there is ahierarhy of lasses (types) and method names are overloaded. I.e. a method may havedi�erent implementations for di�erent types of its arguments. At run time when a methodis invoked, the most spei� implementation whih is appropriate for the arguments hasto be ativated. This is a ritial omponent of exeution performane in objet orientedlanguages. Here is a more formal spei�ation of the problem.We model the lass hierarhy by a tree T with n nodes, eah representing a lass. A1Note that testing whether a point is above or below a line takes O(1) time.

www.manaraa.com

1-6lass A whih is a desendant of B is more spei� than B and we denote this relation byA � B or A < B if we know that A 6= B. In addition we have m di�erent implementationsof methods, where eah suh implementation is spei�ed by a name, number of arguments,and the type of eah argument. We shall assume that m > n, as if that is not the asewe an map nodes that do not partiipate in any method to their losest anestor thatdoes partiipate in O(n) time. A method invoation is a query of the form s(A1; : : : ; Ad)where s is a method name that has d arguments with types A1; : : : ; Ad, respetively. Animplementation s(B1; : : : ; Bd) is appliable for s(A1; : : : ; Ad) if Ai � Bi for every 1 � i � d.The most spei� method whih is appliable for s(A1; : : : ; Ad) is the method s(B1; : : : ; Bd)suh that Ai � Bi for 1 � i � d, and for any other implementation s(C1; : : : ; Cd) whih isappliable for s(A1; : : : ; Ad) we have Bi � Ci for 1 � i � d. Note that for d > 1 this maybe ambiguous, i.e. we might have two appliable methods s(B1; : : : ; Bd) and s(C1; : : : ; Cd)where Bi 6= Ci, Bj 6= Cj , Bi � Ci and Cj � Bj . The dispathing problem is to �nd for eahinvoation the most spei� appliable method if it exists. If it does not exist or in ase ofambiguity, \no appliable method" or \ambiguity" has to be reported, respetively. In thebinary dispathing problem, d = 2, i.e. we assume that all implementations and invoationshave two arguments.Alstrup et. al. desribe a data struture for the binary dispathing problem that useO(m) spae, O(m(log logm)2) preproessing time and O(logm) query time. They obtainthis data struture by reduing the problem to what they all the bridge olor problem. Inthe bridge olor problem the input onsists of two trees T1 and T2 with edges, alled bridges,onneting verties in T1 to verties in T2. Eah bridge is olored by a subset of olors fromC. The goal is to onstrut a data struture whih allows queries of the following form.Given a triple (v1; v2;) where v1 2 T1, v2 2 T2, and 2 C �nds the bridge (w1; w2) suhthat1. v1 � w1 in T1, and v2 � w2 in T2, and is one of the olors assoiated with(w1; w2).2. There is no other suh bridge (w0; w00) with v2 � w00 < w2 or v1 � w0 < w1.If there is no bridge satisfying the �rst ondition the query just returns nothing and if thereis a bridge satisfying the �rst ondition but not the seond we report \ambiguity". Weredue the binary dispathing problem to the bridge olor problem by taking T1 and T2 tobe opies of the lass hierarhy T of the dispathing problem. The set of olors is the set ofdi�erent method names. (Reall that eah method name may have many implementationsfor di�erent pairs of types.) We make a bridge (v1; v2) between v1 2 T1 and v2 2 T2whenever there is an implementation of some method for lasses v1 and v2. We olor thebridge by all names of methods for whih there is an implementation spei� to the pairof type (v1; v2). It is easy to see now that when we invoke a method s(A1; A2) the mostspei� implementation of s to ativate orresponds to the bridge olored s onneting ananestor of v1 to an anestor of v2 whih also satis�es Condition (2) above.In a way whih is somewhat similar to the redution between stati two dimensionalproblem to a dynami one dimensional problem in the plane sweep tehnique above, Alstrupet. al. redue the stati bridge olor problem to a similar dynami problem on a single treewhih they all the tree olor problem. In the tree olor problem you are given a tree T ,and a set of olors C. At any time eah vertex of T has a set of olors assoiated with it.We want a data struture whih supports the updates, olor(v,): whih add the olor tothe set assoiated with v; and unolor(v,) whih deletes the olor from the set assoiatedwith v. The query we support is given a vetrex v and a olor , �nd the losest anestor ofv that has olor .

www.manaraa.com

Persistent data strutures 1-7The redution between the bridge olor problem and the tree olor problem is as follows.For eah node v 2 T1 we assoiate an instane `v of the tree olor problem where theunderlying tree is T2 and the set of olors C is the same as for the bridge olor problem.The label of a node w 2 T2 in `v ontains olor if w is an endpoint of a bridge with olor whose endpoint in T1 is an anestor of v. For eah pair (w;) where w 2 T2 and is a olorassoiated with w in `v we also keep the losest anestor v0 to v in T1 suh that there is abridge (v0; w) olored . We an use a large (sparse) array indexed by pairs (w;) to mapeah suh pair to its assoiated vertex. We denote this additional data struture assoiatedwith v by av. Similarly for eah vertex u 2 T2 we de�ne an instane `u of the tree olorproblem when the underlying tree is T1, and the assoiated array au.We an answer a query (v1; v2;) to the bridge olor data struture as follows. We querythe data struture `v1 with v2 to see if there is an anestor of v2 olored in the oloringof T2 de�ned by `v1 . If so we use the array av1 to �nd the bridge (w1; w2) olored wherev1 � w1 and v2 � w2, and w1 is as lose as possible to v1. Similarly we use the datastrutures `v2 and av2 to �nd the bridge (w1; w2) olored where v1 � w1 and v2 � w2,and w2 is as lose as possible to v2, if it exists. Finally if both bridges are idential thenwe have the answer to the query (v1; v2;) to the bridge olor data struture. Otherwise,either there is no suh bridge or there is an ambiguity (when the two bridges are di�erent).The problem of this redution is its large spae requirement if we represent eah datastruture `v, and av for v 2 T1 [T2 independently.2 The ruial observation though is thatthese data strutures are strongly related. Thus if we use a dynami data struture forthe tree olor problem we an obtain the data struture orresponding to w from the datastruture orresponding to its parent using a small number of modi�ations. Spei�ally,suppose we have generated the data strutures `v and av for some v 2 T1. Let w be a hildof v in T1. We an onstrut `w by traversing all bridges whose one endpoint is w. For eahsuh bridge (w; u) olored , we perform olor(u,), and update the entry of (u;) in av toontain w.So if we were using fully persistent arrays and a fully persistent data struture for the treeolor problem we an onstrut all data strutures mentioned above while doing only O(m)updates to these persistent data strutures. Alstrup et. al. [1℄ desribe a data struture forthe tree olor problem where eah update takes O(log logm) expeted time and query timeis O(logm= log logm). The spae is linear in the sum of the sizes of the olor-sets of theverties. To make it persistent without onsuming too muh spae Alstrup et. al. [1℄ suggesthow to modify the data struture so that eah update makes O(1) memory modi�ationsin the worst ase (while using somewhat more spae). Then by applying the tehnique ofDietz [12℄ (see also Setion 1.3.3) to this data struture we an make it fully persistent.The time bounds for updates and queries inrease by a fator of O(log logm), and thetotal spae is O(jCjm). Similarly, we an make the assoiated arrays av fully persistent.The resulting solution to the binary dispathing problem takes O(m(log logm)2) time toonstrut, requires O(jCjm) spae and support a query in O(logm) time. Sine the numberof memory modi�ations while onstruting the data struture is only O(m) Alstrup et.al. also suggest that the spae an be further redues to O(m) by maintaining the entirememory as a dynami perfet hashing data struture.Fully persistent lists proved useful in reduing the spae requirements of few three di-mensional geometri algorithms based on the sweep line tehnique, where the items on the2We an ompress the sparse arrays using hashing but even if we do that the spae requirement may bequadrati in m.

www.manaraa.com

1-8sweep line have seondary lists assoiated with them. Kitsios and Tsakalidis [25℄ onsideredhidden line elimination and hidden surfae removal. The input is a olletion of (noninterseting) polygons in three dimensions. The hidden line problem asks for the parts ofthe edges of the polygons that are visible from a given viewing position. The hidden surfaeremoval problem asks to ompute the parts of the polygons that are visible from the viewingposition.An algorithm of Nurmi [27℄ solves these problems by projeting all polygons into a ol-letion of possible interseting polygons in the plane and then sweeping this plane, stoppingat any vertex of a projeted polygone, or rossing point of a pair of projeted edges. Whenthe sweep stops at suh point, the visibility status of its inident edges is determined. Thealgorithm maintain a binary balaned tree whih stores the edges ut by the sweep line insorted order along the sweep line. With eah suh edge it also maintains another balanedbinary tree over the faes that over the interval between the edge and its suessor edgeon the sweep line. These faes are ordered in inreasing depth order along the line of sight.An ative edge is visible if the topmost fae in its list is di�erent from the topmost fae inthe list of its predeessor. If n is the number of verties of the input polygons and I is thenumber of intersetions of edges on the projetion plane then the sweep line stops at n+ Ipoints. Looking more arefully at the updates one has to perform during the sweep, weobserve that a onstant number of update operations on balaned binary searh trees has tobe performed non destrutively at eah point. Thus, using fully persistent balaned searhtrees one an implement the algorithm in O((n+ I) log n) time and O(n+ I) spae. Kitsiosand Tsakalidis also show that by rebuilding the data struture from srath every O(n)updates we an redue the spae requirement to O(n) while retaining the same asymptotirunning time.Similar tehnique has been used by Bozanis et. al. [4℄ to redue the spae requirement ofan algorithm of Gupta et. al. [20℄ for the retangular enlosure reporting problem. In thisproblem the input is a set S of n retangles in the plane whose sides are parallel to the axes.The algorithm has to report all pairs (R;R0) of retangles where R;R0 2 S and R enlosesR0. The algorithm uses the equivalene between the retangle enlosure reporting problemand the 4-dimensional dominane problem. In the 4-dimensional dominane problem theinput is a set of n points P in four dimensional spae. A point p = (p1; p2; p3; p4) dominatesp0 = (p01; p02; p03; p04) if and only if pi � p0i for i = 1; 2; 3; 4. We ask for an algorithm to reportall dominating pairs of points, (p; p0), where p; p0 2 P , and p dominates p0. The algorithmof Gupta at. el. �rst sorts the points by all oordinates and translates the oordinates toranks so that they beome points in U4 where U = f0; 1; 2; : : : ; ng. It then divides the setsinto two equal halves R and B aording to the forth oordinate (R ontains the points withsmaller forth oordinate). Using reurrene on B and on R it �nds all dominating pairs(p; p0) where p and p0 are either both in B or both in R. Finally it �nds all dominatingpairs (r; b) where r 2 R and b 2 B by iterating a plane sweeping algorithm on the threedimensional projetions of the points in R and B. During the sweep, for eah point in B, alist of points that it dominates in R is maintained. The size of these lists may potentiallybe as large as the output size whih in turn may be quadrati. Bozanis et. al. suggest toredue the spae by making these lists fully persistent, whih are periodially being rebuilt.1.3 General tehniques for making data strutures persis-tentWe start in Setion 1.3.1 desribing the fat node simulation. This simulation allows to obtainfully persistent data strutures and has an optimal spae expansion but time slowdown

www.manaraa.com

Persistent data strutures 1-9logarithmi in the number of versions. Setion 1.3.2 desribes the node opying and thenode splitting methods that redue the time slowdown to be onstant while inreasing thespae expansion only by a onstant fator. In Setion 1.3.3 we address the question ofmaking arrays persistent. Finally in Setion 1.3.4 we desribe simulation that makes datastrutures onuently persistent.1.3.1 The fat node methodDSST �rst onsidered the fat node method . The fat node method works by allowing a �eldin a node of the data struture to ontain a list of values. In a partial persistent setting weassoiate �eld value x with version number i, if x was assigned to the �eld in the updateoperation that reated version i.3 We keep this list of values sorted by inreasing versionnumber in a searh tree. In this method simulating an assignment takes O(1) spae, andO(1) time if we maintain a pointer to the end of the list. An aess step takes O(logm)time where m is the number of versions.The diÆulty with making the fat node method work in a fully persistent setting is thelak of total order on the versions. To eliminate this diÆulty, DSST impose a total orderon the versions onsistent with the partial order de�ned by the version tree. They all thistotal order the version list. When a version i is reated it is inserted into the version listimmediately after its parent (in the version tree). This implies that the version list de�nesa preorder on the version tree where for any version i, the desendants of i in the versiontree our onseutively in the version list, starting with i.The version list is maintained in a data struture that given two versions x and y allowsto determine eÆiently whether x preedes y. Suh a data struture has been suggested byDietz and Sleator [11℄. (see also a simpler related data struture by [2℄.) The main ideaunderlying these data strutures is to assign an integer label to eah version so that theselabels monotonially inrease as we go along the list. Some diÆulty arises sine in orderto use integers from a polynomial range we oasionally have to relabel some versions. ForeÆient implementation we need to ontrol the amount of relabeling being done. We denotesuh a data struture that maintains a linear order subjet to the operation insert(x; y)whih inserts x after y, and order(x; y) whih returns \yes" if x preedes y, an OrderMaintenane (OM) data struture.As in the partial persistene ase we keep a list of version-value pairs in eah �eld. Thislist ontains a pair for eah value assigned to the �eld in any version. These pairs are orderedaording to the total order imposed on the versions as desribed above. We maintain theselists suh that the value orresponding to �eld f in version i is the value assoiated with thelargest version in the list of f that is not larger than i. We an �nd this version by arryingout a binary searh on the list assoiated with the �eld using the OM data struture to doomparisons.To maintain these lists suh that the value orresponding to �eld f in version i is the valueassoiated with the largest version in the list of f that is not larger than i, the simulation ofan update in the fully persistent setting di�er slightly from what happens in the partiallypersistent ase. Assume we assign a value x to �eld f in an update that reates version i.(Assume for simpliity that this is the only assignment to f during this update.) First weadd the pair (i; x) to the list of pairs assoiated with �eld f . Let i0 be the version following3If the update operation that reated version i assigned to a partiular �eld more than one we keeponly the value that was assigned last.

www.manaraa.com

1-10i in the version list (i.e. in the total order of all versions) and let i00 be the version followingi in the list assoiated with f . (If there is no version following i in one of these lists weare done.) If i00 > i0 then the addition of the pair (i; x) to the list of pairs assoiated withf may hange the value of f in all versions between i0 and the version preeding i00 in theversion list, to be x. To �x that we add another pair (i0; y) to the list assoiated with f ,where y is the value of f before the assignment of x to f . The overhead of the fat nodemethod in a fully persistent settings is O(logm) time and O(1) spae per assignment, andO(logm) time per aess step, where m is the number of versions. Next, DSST suggestedtwo methods to redue the logarithmi time overhead of the fat node method. The simplerone obtains a partially persistent data struture and is alled node opying . To obtain afully persistent data struture DSST suggested the node splitting method.1.3.2 Node opying and node splittingThe node-oping and the node splitting methods simulate the fat node method using nodesof onstant size. Here we assume that the data struture is a pointer based data struturewhere eah node ontains a onstant number of �elds. For reasons that will beome learshortly we also assume that the nodes are of onstant bounded in-degree, i.e. the numberof pointer �elds that ontains the address of any partiular node is bounded by a onstant.In the node opying method we allow nodes in the persistent data struture to hold onlya �xed number of �eld values. When we run out of spae in a node, we reate a new opyof the node, ontaining only the newest value of eah �eld. Let d be the number of pointer�elds in an ephemeral node and let p be the maximum in-degree of an ephemeral node. Eahpersistent node ontains d �elds whih orresponds to the �elds in the ephemeral node, ppredeessor �elds, e extra �elds, where e is a suÆiently large onstant that we speify later,and one �eld for a opy pointer.All persistent nodes whih orrespond to the same ephemeral node are linked togetherin a single linked list using the opy pointer. Eah �eld in a persistent node has a versionstamp assoiated with it. As we go along the hain of persistent nodes orresponding toone ephemeral node then the version stamps of the �elds in one node are no smaller thanversion stamps of the �elds in the preeding nodes. The last persistent node in the hain isalled live. This is the persistent node representing the ephemeral node in the most reentversion whih we an still update. In eah live node we maintain predeessor pointers. If xis a live node and node z points to x then we maintain in x a pointer z.We update �eld f in node v, while simulating the update operation reating version i asfollows. Let x be the live persistent node orresponding to v in the data struture. If xalready ontains a value of �eld f that is assoiated with version i then we overwrite thisvalue with the new value. Otherwise, if there is an empty extra �eld in x then we assignthe new value to this extra �eld, and mark it as a value assoiated with original �eld f inversion i. If f is a pointer �eld whih now points to a node z, we update the orrespondingpredeessor pointer in z to point to x. In ase all extra �elds in x are used we opy x asfollows.We reate a new persistent node y, make the opy pointer of x point to y, store in eahoriginal �eld in y the most reent value assigned to it, and mark these values with versionstamp i. In partiular, �eld f in node y stores its new value marked with version i. Foreah pointer �eld in y we also update the orresponding predeessor pointer to point to yrather than to x.Then we have to update eah �eld pointing to x in version i� 1 to point to y in versioni. We follow, in turn, eah predeessor pointer in x. Let z be a node pointed to by suh apredeessor pointer. We identify the �eld pointing to x in z and update its value in version

www.manaraa.com

Persistent data strutures 1-11i to be y. We also update a predeessor pointer in y to point to z. If the old value of thepointer to x in z is not marked with version i (in partiular this means that z has not beenopied) then we try to use an extra �eld to store the new version-value pair. If there isno free extra pointer in z we opy z as above. Then we update the �eld that points to xto point to y in the new opy of z. This sequene of node opying may asade, but sineeah node is opied at most one4, the simulation of the update step must terminates. Inversion i, y is the live node orresponding to v.A simple analysis shows that if we use at least as many extra �elds as predeessor �eldsat eah node (i.e. e � p) then the amortized number of nodes that are opied due to a singleupdate is onstant. Intuitively, eah time we opy a node we gain e empty extra �elds inthe live version that \pay" for the assignments that had to be made to rediret pointers tothe new opy.A similar simulation alled the node splitting method makes a data struture fully persis-tent with O(1) amortized overhead in time and spae. The details however are somewhatmore involved so we only sketh the main ideas. Here, sine we need predeessor pointers forany version5 it is onvenient to think of the predeessor pointers as part of the ephemeraldata struture, and to apply the simulation to the so alled augmented ephemeral datastruture.We represent eah fat node by a list of persistent nodes eah of onstant size, with twie asmany extra pointers as original �elds in the orresponding node of the augmented ephemeraldata struture. The values in the �elds of the the persistent nodes are ordered by the versionlist. Thus eah persistent node is assoiated with an interval of versions in the version listand it stores all values of its �elds that fall within this interval. The �rst among thesevalues is stored in an original �eld and the following ones oupy extra �elds.The key idea underlying this simulation is to maintain the pointers in the persistentstruture onsistent suh that when we traverse a pointer valid in version i we arrive at apersistent node whose valid interval ontains version i. More preisely, a value of a pointer�eld must indiate a persistent node whose valid interval ontains the valid interval of .We simulate an update step to �eld f , while reating version i from version p(i), asfollows. If there is already a persistent node x ontaining f marked with version i thenwe merely hange the value of f in x. Otherwise, let x be the persistent node whose validinterval ontains version i. Let i+ be the version following i in the version list. Assume thenode following x does not have version stamp of i+. We reate two new persistent node x0,and x00, and insert them into the list of persistent nodes of x, suh that x0 follows x, and x00follows x0. We give node x0 version stamp of i and �ll all its original �elds with their valuesat version i. The extra �elds in x0 are left empty. We give x00 version stamp of i+. We �llthe original �elds of x00 with their values at version i+. We move from the extra �elds of xall values with version stamps following i+ in the version list to x00. In ase the node whihfollows x in its list has version stamp i+ then x00 is not needed.After this �rst stage of the update step, values of pointer �elds previously indiating xmay be inonsistent. The simulation then ontinues to restore onsisteny. We loate allnodes ontaining inonsistent values and insert them into a set S. Then we pull out onenode at the time from S and �x its values. To �x a value we may have to replae it with two4When we opy a node, while reating version i, all the original �elds in the new opy have versionstamp i, if later, during the same update operation, we hange one of them then the update will simplyoverwrite their value.5So we annot simply overwrite a value in a predeessor pointer.

www.manaraa.com

1-12or more values eah valid in a subinterval of the valid interval of the original value. Thisinreases the number of values that has to be stored at the node so we may have to split thenode. This splitting may ause more values to beome inonsistent. So node splitting andonsisteny �xing asades until onsisteny is ompletely restored. The analysis is basedon the fat that eah node splitting produe a node with suÆiently many empty extra�elds. For further details see [18℄.1.3.3 Handling arraysDietz [12℄ desribes a general tehnique for making arrays persistent. In his method, it takesO(log logm) time to aess the array and O(log logm) expeted amortized time to hangethe ontent of an entry, where m is the total number of updates. The spae is linear in m.We denote the size of the array by n and assume that n < m.Dietz essentially suggests to think of the array as one big fat node with n �elds. The listof versions-values pairs desribing the assignments to eah entry of the array is representedin a data struture of van Emde Boas et. al. [34, 33℄. This data struture is made to onsumespae linear in the number of items using dynami perfet hashing [14℄. Eah version isenoded in this data struture by its label in the assoiated Order Maintenane (OM) datastruture. (See Setion 1.3.1.)A problem arises with the solution above sine we refer to the labels not solely via orderqueries on pairs of versions. Therefore when a label of a version hanges by the OM datastruture the old label has to be deleted from the orresponding van Emde Boaz datastruture and the new label has to be inserted instead. We reall that any one of the knownOM data strutures onsists of two levels. The versions are partitioned into sublists of sizeO(logm). Eah sublist gets a label and eah version within a sublist gets a label. The�nal label of a version is the onatenation of these two labels. Now this data struturesupports an insertion in O(1) time. However this insertion may hange the labels of aonstant number of sublists and thereby impliitly hange the labels of O(logm) versions.Reinserting all these labels into the van Emde Boaz strutures ontaining them may take
(logm log logm) timeDietz suggests to solve this problem by buketizing the van Emde Boaz data struture.Consider a list of versions stored in suh a data struture. We split the list into bukets ofsize O(logm). We maintain the versions in eah buket in a regular balaned searh treeand we maintain the smallest version from eah buket in a van Emde Boaz data struture.This way we need to delete and reinsert a label of a version into the van Emde Boaz datastruture only when the minimum label in a buket gets relabeled.Although there are only O(m= logm) elements now in the van Emde Boaz data strutures,it ould still be the ase that we relabel these partiular elements too often. This an happenif sublists that get split in the OM data struture ontains a partiular large number ofbukets' minima. To prevent that from happening we modify slightly the OM data strutureas follows.We de�ne a potential to eah version whih equals 1 if the version is urrently not aminimum in its buket of its van Emde Boaz data struture and equals log logm if it isa minimum in its buket. Notie that sine there are only O(m= logm) bukets' minimathe total potential assigned to all versions throughout the proess is O(m). We partitionthe versions into sublists aording to their potentials where the sum of the potentials ofthe elements in eah sublist is O(logm). We assign labels to the sublists and within eahsublists as in the original OM data struture. When we have to split a sublist the workassoiated with the split, inluding the required updates on the assoiated van Emde Boazdata strutures, is proportional to the inrease in the potential of this sublist sine it had

www.manaraa.com

Persistent data strutures 1-13last split.Sine we an model the memory of a Random Aess Mahine (RAM) as a large array.This tehnique of Dietz is in fat general enough to make any data struture on a RAMpersistent with double logarithmi overhead on eah aess or update to memory.1.3.4 Making data strutures onuently persistentFinding a general simulation to make a pointer based data struture onuently persistentis a onsiderably harder task. In a fully persistent setting we an onstrut any version byarrying out a partiular sequene of updates ephemerally. This seemingly innoent fat isalready problemati in a onuently persistent setting. In a onuently persistent settingwhen an update applies to two versions, one has to produe these two versions to performthe update. Note that these two versions may originate from the same anestral version sowe need some form of persistene even to produe a single version. In partiular methodsthat ahieve persistene typially reate versions that share nodes. Semantially however,when an update applied to versions that share nodes we would like the result to be as if weperform the update on two ompletely independent opies of the input versions.In a fully persistent setting if eah operation takes time polynomial in the number ofversions then the size of eah version is also polynomial in the number of versions. Thisbreaks down in a onuently persistent setting where even when eah operation takes on-stant time the size of a single version ould be exponential in the number of versions. Reallthe example of the linked list mentioned in Setion 1.1. It is initialized to ontain a singlenode and then onatenated with itself n time. The size of the last versions is 2n. It followsthat any polynomial simulation of a data struture to make it onuently persistent mustin some ases represent versions is a ompressed form.Consider the naive sheme to make a data struture persistent whih opies the inputversions before eah update. This method is polynomial in a fully persistent setting whenwe know that eah update operation alloates a polynomial (in the number of versions)number of new nodes. This is not true in a onuently persistent setting as the linked listexample given above shows. Thus there is no easy polynomial method to obtain onuentlypersistene at all.What preisely auses this diÆulty in obtaining a onuently persistent simulation ? Letsassume �rst a fully persistent setting and the naive sheme mentioned above. Consider asingle node x reated during the update that onstruted version v. Node x exists inversion v and opies of it may also exist in desendant versions of v. Notie however thateah version derived from v ontains only a single node whih is either x or a opy of it. Inontrast if we are in a onuently persistent setting a desendant version of v may ontainmore than a single opy of x. For example, onsider the linked list being onatenated toitself as desribed above. Let x be the node alloated when reating the �rst version. Thenafter one atenation we obtain a version whih ontains two opies of x, after 2 atenationswe obtain a version ontaining 4 opies of x, and in version n we have 2n opies of x.Now, if we get bak to the fat node method, then we an observe that it identi�es a nodein a spei� version using a pointer to a fat node and a version number. This works sinein eah version there is only one opy of any node, and thus breaks down in the onuentlypersistent setting. In a onuently persistent setting we need more than a version numberand an address of a fat node to identify a partiular node in a partiular version.To address this identi�ation problem Fiat and Kaplan [19℄ used the notion of pedigree.To de�ne pedigree we need the following notation. We denote the version DAG by D, andthe version orresponding to vertex v 2 D by Dv . Consider the naive sheme de�ned above.Let w be some node in the data struture Dv. We say that node w in version v was derived

www.manaraa.com

1-14from node y in version u if version u was one of the versions on whih the update produingv had been performed, and furthermore node w 2 Dv was formed by a (possibly empty) setof assignments to a opy of node y 2 Du.Let w be a node in some version Du where Du is produed by the naive sheme. Weassoiate a pedigree with w, and denote it by p(w). The pedigree, p(w), is a path p =hp0; p1; : : : ; pk = ui in the version DAG suh that there exist nodes w0, w1, : : :, wk�1,wk = w, where wi is a node of Dpi , w0 was alloated in p0, and wi is derived from wi�1 for1 � i � k. We also all w0 the seminal node of w, and denote it by s(w). Note that p(w)and s(w) uniquely identify w among all nodes of the naive sheme.As an example onsider Figure 1.1. We see that version v4 has three nodes (the 1st, 3rd,and 5th nodes of the linked list) with the same seminal node w00. The pedigree of the 1stnode in Dv4 is hv0; v1; v3; v4i. The pedigree of the 2nd node in Dv4 is also hv0; v1; v3; v4i butits seminal node is w0. The pedigree of the 3rd node is hv0; v2; v3; v4i. The pedigree of the4th node is hv2; v3; v4i and its seminal node is w000 . Similarly the pedigree of the 5th node ishv0; v2; v4i, and the pedigree of the 6th node is hv2; v4i.The basi simulation of Fiat and Kaplan is alled the full path method and it works asfollows. The data struture onsists of a olletion of fat nodes. Eah fat node orrespondsto an expliit alloation of a node by an update operation or in another words, to someseminal node of the naive sheme. For example, the update operations of Figure 1.1 performs3 alloations (3 seminal nodes) labeled w0; w00, and w000 , so our data struture will have 3fat nodes, f(w0), f(w00) and f(w000). The full path method represents a node w of the naivesheme by a pointer to the fat node representing s(w), together with the pedigree p(w).Thus a single fat node f represents all nodes sharing the same seminal node. We denotethis set of nodes by N(f). Note that N(f) may ontain nodes that o-exist within the sameversion and nodes that exist in di�erent versions. A fat node ontains the same �elds asthe orresponding seminal node. Eah of these �elds, however, rather than storing a singlevalue as in the original node stores a dynami table of �eld values in the fat node. Thesimulation will be able to �nd the orret value in node w 2 N(f) using p(w). To speify therepresentation of a set of values we need the following de�nition of an assignment pedigree.Let p = hp0; : : : ; pk = ui be the pedigree of a node w 2 Du. Let wk = w;wk�1; : : : ; w1,wi 2 Dpi be the sequene of nodes suh that wi 2 Dpi is derived from wi�1 2 Dpi�1 . Thissequene exists by the de�nition of node's pedigree. Let A be a �eld in w and let j be themaximum suh that there has been an assignment to �eld A in wj during the update thatreated pj . We de�ne the assignment pedigree of a �eld A in node w, denoted by p(A;w),to be the pedigree of wj , i.e. p(A;w) = hp0; p1; : : : ; pji.In the example of Figure 1.1 the nodes ontain one pointer �eld (named next) and onedata �eld (named x). The assignment pedigree of x in the 1st node of Dv4 is simply hv0i, theassignment pedigree of x in the 2nd node of Dv4 is likewise hv0i, the assignment pedigree ofx in the 3rd node of Dv4 is hv0; v2; v3i. Pointer �elds also have assignment pedigrees. Theassignment pedigree of the pointer �eld in the 1st node of Dv4 is hv0; v1i, the assignmentpedigree of the pointer �eld in the 2nd node of Dv4 is hv0; v1; v3i, the assignment pedigreeof the pointer �eld of the 3rd node of Dv4 is hv0; v2i, �nally, the assignment pedigree of thepointer �eld of the 4th node of Dv4 is hv2; v3; v4i.We all the set fp(A;w) j w 2 N(f)g the set of all assignment pedigrees for �eld A in afat note f , and denote it by P (A; f). The table that represents �eld A in fat node f ontainsan entry for eah assignment pedigree in P (A; f). The value of a table entry, indexed by anassignment pedigree p = hp0; p1; : : : ; pji, depends on the type of the �eld as follows. If A isa data �eld then the value stored is the value assigned to A in the node wj 2 Dvj whosepedigree is p. If A is a pointer �eld then let w be the node pointed to by �eld A after theassignment to A in wj . We store the pedigree of w and the address of the fat node that

www.manaraa.com

Persistent data strutures 1-15
 Allocate nodes w0, w0',

with
x=2 and x=1,

concatenate them
x=1

Access
Pointer

Invert order of input
linked list

x=1

x=2

Delete first node of list,
allocate new node

x=1, concatenate to input
listx=1

x=1

Add +2 to all elements
of right list

Concatenate left and
right listsx=1

x=2 x=3

x=3

Concatenate Left and
Right Lists

x=1

x=2 x=3 x=3

x=1

x=1

v0

v1

v2

v3

v4

v0
v0 v0

x=1 x=3 x=1

x=2

w0

w0'

w0''

FIGURE 1.1: A DAG of �ve versions. In eah irle we show the orresponding updateoperation and the resulting version. Nodes with the same olor originate from the sameseminal node. The three gray nodes in version Dv4 all have the same seminal node (w00),and are distinguished by their pedigrees hv0; v1; v3; v4i, hv0; v2; v3; v4i, and hv0; v2; v4i.represents the seminal node of w.An aess pointer to a node w in version v is represented by a pointer to the fat noderepresenting the seminal node of w and the pedigree of w.In Figure 1.2 we give the fat nodes of the persistent data struture given in Figure 1.1.For example, the �eld next has three assignments in nodes of N(f(w00)). Thus, there arethree assignment pedigrees in P (next; f(w00)):1. hv0i | alloation of w00 in version Dv0 and default assignment of null to next.2. hv0; v1i | inverting the order of the linked list in version Dv1 and thus assigningnext a new value. The pointer is to a node whose pedigree is hv0; v1i and whose

www.manaraa.com

1-16
f(w0)

f(w0') Assignment Pedigree Field Value

<v0> 1

x

ne
xt

Assignment Pedigree

<v0>

(<v0 ,v1 >,f(w0))<v0 ,v1>

null

(<v2>,f(w0''))

<v0 , v2 , v3> 3

<v0 ,v2>

f(w0'') Assignment Pedigree Field Value

<v2> 1

x

ne
xt

Assignment Pedigree

<v2>

(<v0 , v2 , v4>,f(w0'))

null

<v2 , v3> 3

<v2 , v3 , v4>

Assignment Pedigree Field Value

<v0> 2

x

ne
xt

Assignment Pedigree Field Value

<v0> (<v0>,f(w0'))

<v0 ,v1>

<v0 ,v1 ,v3>

null

(<v0 ,v2 ,v3>,f(w0'))

Field Value

Field Value

FIGURE 1.2: The fat nodes for the example of Figure 1.1.seminal node is w0. So we assoiate the value (hv0; v1i; f(w0)) with hv0; v1i.3. hv0; v2i | alloating a new node, w000 , in version Dv2 , and assigning next topoint to this new node. The pedigree of w000 is hv2i so we assoiate the value(hv2i; f(w000)) with hv0; v2i.We see all three entries in the table for next in the fat node f(w00) (Figure 1.2). Similarly,we give the table for �eld x in f(w00) as well as the tables for both �elds in fat nodes f(w0)and f(w000).When we traverse the data struture we are pointing to some fat node f and hold apedigree q of some node w whose seminal node orresponds to f and we would like toretrieve the value of �eld A in node w from the table representing �eld A in f . We do thatas follows. First we identify the assignment pedigree p(A;w) of �eld A in node w. This isthe longest pedigree whih is a pre�x of q and has an entry in this table. In ase A is a data�eld, the value we are after is simply the value assoiated with p(A;w). However if A is apointer �eld then the value stored with p(A;w) may not be the value of A in w. This valueidenti�es a node in the version where the assignment ourred, whereas we are interestedin a node in the version of w where this pointer �eld points to.

www.manaraa.com

Persistent data strutures 1-17Let q = hq0; : : : ; qki and let p(A;w) = hq0; q1; : : : ; qji. Let the value of p(A;w) be (t; f),where t is the pedigree of the target node in Dqj and f is the fat node representing theseminal node of this target node. The nodes identi�ed by the pedigrees p(A;w) and t wereopied in versions qj+1, : : :, qk without any assignment made to �eld A in the nodes derivedfrom the node whose pedigree is p(A;w). Thus the pedigree of the target node of �eld A ofnode w in Dqk is tkhqj+1; : : : ; qki, where k represents onatenation.It follows that we need representations for pedigrees and the tables representing �eldvalues that support an eÆient implementation of the followings.1. Given a pedigree q �nd the longest pre�x of q stored in a table.2. Given a pedigree q, replae a pre�x of q with another pedigree p.3. To failitate updates we also need to be able to add a pedigree to a table repre-senting some �eld with a orresponding value.In their simplest simulation Fiat and Kaplan suggested to represent pedigrees as linkedlists of version numbers, and to represent tables with �eld values as tries. Eah assignmentpedigree ontained in the table is represented by a path in the orresponding trie. The lastnode of the path stores the assoiated value. Nodes in the trie an have large degrees so foreÆieny we represent the hildren of eah node in a trie by a splay tree.Let U be the total number of assignments the simulation performs and onsider the updatereating version v. Then with this implementation eah assignment performed during thisupdate requires O(d(v)) words of size O(logU) bits and takes O(d(v) + logU), where d(v)is the depth of v in the DAG. Field retrieval also takes O(d(v) + logU) time.The seond method suggested by Fiat and Kaplan is the ompressed path method. Theessene of the ompressed path method is a partiular partition of our DAG into disjointtrees. This partition is de�ned suh that every path enters and leaves any spei� tree atmost one. The ompressed path method enodes paths in the DAG as a sequene of pairs ofversions. Eah suh pair ontains a version where the path enters a tree T and the versionwhere the path leaves the tree T . The length of eah suh representation is O(e(D)).6Eah value of a �eld in a fat node is now assoiated with the ompressed representationof the path of the node in N(f) in whih the orresponding assignment ourred. A keyproperty of these ompressed path representations is that they allow easy implementationof the operations we need to perform on pedigree, like replaing a pre�x of a pedigreewith another pedigree when traversing a pointer. With the ompressed path method eahassignment requires up to O(e(D)) words eah of O(logU) bits. Searhing or updating thetrie representing all values of a �eld in a fat node requires O(e(D) + logU) time. For thease where the DAG is a tree this method degenerates to the fat node simulation of [18℄.Fiat and Kaplan also suggested how to use randomization to speed up their two basimethods at the expense of (slightly) larger spae expansion and polynomially small errorprobability. The basi idea is enode eah path (or ompressed path) in the DAG by aninteger. We assign to eah version a random integer, and the enoding of a path p is simplythe sum of the integers that orrespond to the versions on p. Eah value of a �eld in a fatnode is now assoiated with the integer enoding the path of the node in N(f) in whih theorresponding assignment ourred. To index the values of eah �eld we use a hash tablestoring all the integers orresponding to these values.6Reall that e(D) is the logarithm of the maximum number of di�erent paths from the root of the DAGto any partiular version.

www.manaraa.com

1-18To deal with values of pointer �elds we have to ombine this enoding with a represen-tation of paths in the DAG (or ompressed paths) as balaned searh trees, whose leaves(in left to right order) ontain the random integers assoiated with the verties along thepath (or ompressed path). This representation allows us to perform ertain operations onthese paths in logarithmi (or poly-logarithmi) time whereas the same operations requiredlinear time using the simpler representation of paths in the non-randomized methods.1.4 Making spei� data strutures more eÆientThe purely funtional deques of Kaplan and Tarjan [23℄, the onuently persistent dequesof Kaplan, Okasaki, and Tarjan [21℄, the purely funtional heaps of Brodal and Okasaki [6℄,and the purely funtional �nger searh trees of Kaplan and Tarjan [22℄, are all based on asimple and useful mehanism alled redundant ounters, whih to the best of our knowledge�rst appeared in leture notes by Clany and Knuth [9℄. In this setion we desribe whatredundant ounters are, and demonstrate how they are used in simple persistent dequesdata struture.A persistent implementation of deques support the following operations:q0 = push(x; q): Inserts an element x to the beginning of the deque q returning a new dequeq0 in whih x is the �rst element followed by the elements of q.(x; q0) = pop(q): Returns a pair where x is the �rst element of q and q0 is a deque ontainingall elements of q but x.q0 = Injet(x; q): Inserts an element x to the end of the deque q returning a new deque q0in whih x is the last element preeded by the elements of q.(x; q0) = ejet(q): Returns a pair where x is the last element of q and q0 is a deque ontainingall elements of q but x.A stak supports only push and pop, a queue supports only push and ejet. Catenabledeques also support the operationq = atenate(q1; q2): Returns a queue q ontaining all the elements of q1 followed by theelements of q2.Although queues, and in partiular atenable queues, are not trivial to make persistent,staks are easy. The regular representation of a stak by a singly linked list of nodes, eahontaining an element, ordered from �rst to last, is in fat purely funtional. To push anelement onto a stak, we reate a new node ontaining the new element and a pointer tothe node ontaining the previously �rst element on the stak. To pop a stak, we retrievethe �rst element and a pointer to the node ontaining the previously seond element.Diret ways to make queues persistent simulate queues by staks. One stak holds ele-ments from the beginning of the queue and the other holds elements from its end. If weare interested in fully persistene this simulation should be real time and its details are nottrivial. For a detailed disussion see Kaplan and Tarjan [23℄ and the referenes there.Kaplan and Tarjan [23℄ desribed a new way to do a simulation of a deque with staks.They suggest to represent a deque by a reursive struture that is built from bounded-sizedeques alled bu�ers. Bu�ers are of two kinds: pre�xes and suÆxes. A non-empty deque qover a set A is represented by an ordered triple onsisting of a pre�x , prefix(q), of elementsof A, a hild deque, hild(q), whose elements are ordered pairs of elements of A, and asuÆx , suffix(q), of elements of A. The order of elements within q is the one onsistentwith the orders of all of its omponent parts. The hild deque hild(q), if non-empty, isrepresented in the same way. Thus the struture is reursive and unwinds linearly. Wede�ne the desendants fhildi(q)g of deque d in the standard way, namely hild0(q) = qand hildi+1(q) = hild(hildi(q)) for i � 0 if hildi(q) is non-empty.

www.manaraa.com

Persistent data strutures 1-19Observe that the elements of q are just elements of A, the elements of hild(q) are pairsof elements of A, the elements of hild(hild(q)) are pairs of pairs of elements of A, and soon. One an think of eah element of hildi(q) as being a omplete binary tree of depth i,with elements of A at its 2i leaves. One an also think of the entire struture representingq as a stak (of q and its desendants), eah element of whih is pre�x-suÆx pair. All theelements of q are stored in the pre�xes and suÆxes at the various levels of this struture,grouped into binary trees of the appropriate depths: level i ontains the pre�x and suÆxof hildi(q). See Figure 1.3.
prefix suffix

1

2

prefix

3 4 5

prefix

e

suffix

a b c d

suffix

6 7 8 9

e

suffix

f

suffix

g

suffix

e f

suffix

6 7 8 9

V
1

V
2

V
3

a b c dFIGURE 1.3: Representation of a deque of elements over A. Eah irle denotes a dequeand eah retangle denotes a bu�er. Squares orrespond to elements from A whih wedenote by numbers and letters. Eah bu�er ontains 0, 1, or 2 elements. Three versionsare shown V1, V2, and V3. Version V2 was obtained from V1 by injeting the element f .Version V3 obtained from version V2 by injeting the element g. The latter injet triggeredtwo reursive injets into the hild and grandhild deques of V2. Note that idential binarytrees and elements are represented only one but we draw them multiple times to avoidluttering of the �gure.Beause of the pairing, we an bring two elements up to level i by doing one pop or ejetat level i+ 1. Similarly, we an move two elements down from level i by doing one push orinjet at level i+ 1. This two-for-one payo� leads to real-time performane.Assume that eah pre�x or suÆx is allowed to hold 0, 1, or 2 elements, from the beginningor end of the queue, respetively. We an implement q0 = push(x; q) as follows. If the pre�xof q ontains 0 or 1 elements we alloate a new node to represent q0 make its hild dequeand its suÆx idential to the hild and suÆx of q, respetively. The pre�x of q0 is a newlyalloated pre�x ontaining x and the element in the pre�x of q, if the pre�x of q ontainedone element. We return a pointer the new node whih represents q0. For an exampleonsider version V2 shown in Figure 1.3 that was obtained from version V1 by a ase ofinjet symmetri to the ase of the push just desribed.

www.manaraa.com

1-20The hard ase of the push is when the pre�x of q already ontains two elements. Inthis ase we make a pair ontaining these two elements and push this pair reursively intohild(q). Then we alloate a new node to represent q0, make its suÆx idential to the suÆxof q, make the deque returned by the reursive push to hild(q) the hild of q0, and makethe pre�x of q0 be a newly alloated pre�x ontaining x. For an example onsider versionV3 shown in Figure 1.3 that was obtained from version V2 by a reursive ase of injetsymmetri to the reursive ase of the push just desribed. The implementations of popand ejet is symmetri.This implementation is learly purely funtional and therefore fully persistent. Howeverthe time and spae bounds per operation areO(logn). The same bounds as one gets by usingsearh trees to represent the deques with the path opying tehnique. These logarithmitime bounds are by far o� from the ephemeral O(1) time and spae bounds.Notie that there is a lear orrespondene between this data struture and binary oun-ters. If we think of a bu�er with two elements as the digit 1, and of any other bu�er as thedigit 0, then the implementation of push(q) is similar to adding one to the binary numberde�ned by the pre�xes of the queues hildi(q). It follows that if we are only interested inpartially persistent deques then this implementation has O(1) amortized time bound peroperation (see the disussion of binary ounters in the next setion). To make this simu-lation eÆient in a fully persistent setting and even in the worst ase, Kaplan and Tarjansuggested to use redundant ounters.1.4.1 Redundant binary ountersTo simplify the presentation we desribe redundant binary ounters, but the ideas arryover to any basis. Consider �rst the regular binary representation of an integer i. To obtainfrom this representation the representation of i + 1 we �rst ip the rightmost digit. If weipped a 1 to 0 then we repeat the proess on the next digit to the left. Obviously, thisproess an be long for some integers. But it is straightforward to show that if we arry outa sequene of suh inrements starting from zero then on average only a onstant numberof digits hange per inrement.7 Redundant binary representations (or ounters as we willall them) address the problem of how to represent i so we an obtain a representation ofi+ 1 while hanging only a onstant number of digits in the worst ase.A redundant binary representation, d, of a non-negative integer x is a sequene of digitsdn; : : : ; d0, with di 2 f0; 1; : : : ; 2g, suh that x = Pni=0 di2i. We all d regular if, betweenany two digits equal to 2, there is a 0, and there is a 0 between the rightmost 2 and the leastsigni�ant digit. Notie that the traditional binary representation of eah integer (whihdoes not use the digit 2) is regular . In the sequel when we refer to a regular representationwe mean a regular redundant binary representation, unless we expliitly state otherwise.Suppose we have a regular representation of i. We an obtain a regular representation ofi+1 as follows. First we inrement the rightmost digit. Note that sine the representationof i is regular, its rightmost digit is either 0 or 1. So after the inrement the rightmost digitis either 1 or 2 and we still have a redundant binary representation for i+ 1. Our onernis that this representation of i + 1 may not be regular. However, sine the representationof i we started out with was regular the only violation to regularity that we may have inthe representation of i+ 1 is laking a 0 between the rightmost 2 and the least signi�ant7The rightmost digit hanges every inrement, the digit to it left hanges every other operation, and soon.

www.manaraa.com

Persistent data strutures 1-21digit. It is easy to hek that between any two digits equal to 2, there still is a 0, by theregularity of i.We an hange the representation of i+ 1 to a representation whih is guaranteed to beregular by a simple �x operation. A �x operation on a digit di = 2 inrements di+1 by 1and sets di to 0, produing a new regular representation d0 representing the same numberas d.8 If after inrementing the rightmost digit we perform a �x on the rightmost 2 thenwe swith to another representation of i+ 1 that must be regular. We omit the proof herewhih is straightforward.It is lear that the inrement together with the �x that may follow hange at most threedigits. Therefore redundant binary representations allow to perform an inrement whilehanging onstantly many digits. However notie that in any appliation of this numberingsystem we will also need a representation that allows to get to the digits whih we need to�x eÆiently. We show one suh representation in the next setion.These redundant representations an be extended so that derement hanges only a on-stant number of digits, or even more generally so that we an inrement or derement anydigit (add or subtrat 2i) while hanging a onstant number of other digits. These additionalproperties of the ounters were exploited by other appliations (see e.g. [22, 24℄.1.4.2 Persistent dequesKaplan and Tarjan use this redundant binary system to improve the deque implementationwe desribed above as follows. We allow eah of the pre�xes and suÆxes to ontain between0 and 5 elements. We label eah bu�er, and eah deque, by one of the digits 0, 1, and 2. Welabel a bu�er 0 if it has two or three elements, we label it 1 if it has one or four elements,and we label it 2 if it has zero or �ve elements. Observe that we an add one element toor delete one element from a bu�er labeled 0 or 1 without violating its size onstraint: Abu�er labeled 0 may hange its label to 1, and a bu�er labeled 1 may hange its label to 2.(In fat a 1 an also be hanged to 0 but this may not violate regularity.) The label of adeque is the larger among the labels of its bu�ers, unless its hild and one of its bu�ers areempty, in whih ase the label of the deque is idential to the label of its nonempty bu�er.This oloring of the deques maps eah deque to a redundant binary representation. Theleast signi�ant digit of this representation is the digit of q, the next signi�ant digit isthe digit of hild(q), and, in general, the ith signi�ant digit is the digit orresponding tohildi(q) if the latter is not empty. We impose an additional onstraint on the deques andrequire that the redundant binary representation of any top-level deque is regular.A regular top-level deque is labeled 0 or 1 whih implies that both its pre�x and its suÆxare labeled 0 or 1. This means that any deque operation an be performed by operating onthe appropriate top-level bu�er. Suppose that the operation is either a push or a pop, thease of injet and ejet is symmetri. We an onstrut the resulting queue q0 by settinghild(q0) = hild(q) and suffix(q0) = suffix(q). The pre�x of q0 is a newly alloated bu�erthat ontains the elements in prefix(q) together with the new element in ase of push orwithout the �rst element in ase of pop. Clearly all these manipulations take onstant time.The label of q0, however, may be one larger than the label of q. So the redundant binaryrepresentation orresponding to q0 is either the same as the redundant binary representationof q in whih ase it is regular, or it is obtained from the redundant binary representation ofq by inrementing the least signi�ant digit. (The least signi�ant digit an also derease in8We use the �x only when we know that di+1 is either 0 or 1.

www.manaraa.com

1-22whih ase regularity is also preserved.) This orresponds to the �rst step in the inrementproedure for redundant regular representations desribed in the previous setion.To make the redundant binary representation of q0 regular we may have to apply a �xoperation. Let i be the minimum suh that hildi(q0) is labeled 2. If for all j < i, hildj(q0)is labeled 1 then the �x has to hange the label of hildi(q0) to 0 and inrement the labelof hildi+1(q0).Fortunately, we have an appropriate interpretation for suh a �x. Assume hildi+1(q0)have a non-empty hild. (We omit the disussion of the ase where hildi+1(q0) have anempty hild whih is similar.) We know that the label of hildi+1(q0) is either 0 or 1 soneither of its bu�ers is empty or full. If the pre�x of hildi(q0) has at least four elements weejet 2 of these elements and push them as a single pair to the pre�x of hildi+1(q0). If thepre�x of hildi(q0) has at most one element we pop a pair from the pre�x of hildi+1(q0)and injet the omponents of the pair into the pre�x of hildi(q0). This makes the pre�xof hildi(q0) ontaining either two or three elements. Similarly by popping a pair from orpushing a pair to the suÆx of hildi(q0), and injeting a pair to or ejeting a pair from thesuÆx of hildi+1(q0) we make the suÆx of hildi(q0) ontaining two or three elements. Asa result the label of hildi(q0) and its two bu�ers beomes 0 while possibly inreasing thelabel of one or both bu�ers of hildi+1(q0) and thereby the label of hildi+1(q0) as well.There is one missing piee for this simulation to work eÆiently. The topmost dequelabeled 2 may be arbitrarily deep in the reursive struture of q0, sine it an be separatedfrom the top level by many deques labeled 1. To implement the �x eÆiently we have to beable to �nd this deque fast and hange it in a purely funtional way by opying the dequesthat hange without having to opy all their anestors deques.For this reason we do not represent a deque in the obvious way, as a stak of pre�x-suÆxpairs. Instead, we break this stak up into substaks. There is one substak for the top-level deque and one for eah desendant deque labeled 0 or 2 not at the top level. Eahsubstak onsists of a top-level, or a deque labeled 0, or a deque labeled 2 and all onseutiveproper desendant deques labeled 1. We represent the entire deque by a stak of substaksof pre�x-suÆx pairs using this partition into substaks. This an be realized with fourpointers per eah node representing a deque at some level. Two of the pointers are to thepre�x and suÆx of the deque. One pointer is to the node for the hild deque if this dequeis non-empty and labeled 1. One pointer is to the node of the nearest proper desendantdeque not labeled 1, if suh a deque exists and q itself is not labeled 1 or top-level. SeeFigure 1.4.A single deque operation will require aess to at most the top three substaks, and toat most the top two elements in any suh substak. The label hanges aused by a dequeoperation produe only minor hanges to the stak partition into substaks, hanges thatan be made in onstant time. In partiular, hanging the label of the top-level deque doesnot a�et the partition into substaks. Changing the label of the topmost deque whih islabeled 2 to 0 and the label of its hild from 1 to 2 splits one substak into its �rst element,now a new substak, and the rest. This is just a substak pop operation. Changing the labelof the topmost deque whih is labeled 2 to 0 and the label of its hild from 0 to 1 merges asingleton substak with the substak under it. This is just a substak push operation.To add atenation, Kaplan and Tarjan had to hange the de�nition of the data strutureand allow deques to be stored as omponents of elements of reursive deques. The redundantbinary numbering system, however, still plays a key role. To represent a atenable deque,Kaplan and Tarjan use nonatenable deques as the basi building bloks. They de�ne atriple over a set A reursively as a pre�x of elements of A, a possibly empty deque of triplesover A, and a suÆx of elements of A, where eah pre�x or suÆx is a nonatenable deque.Then, they represent a atenable deque of elements from A by either one or two triples over

www.manaraa.com

Persistent data strutures 1-23

FIGURE 1.4: Pointer representation of stak of substaks struture. Eah irle orrespondto a deque and it is marked by its label. Eah bu�er is a retangle whih is marked byits label. Triangles denote omplete binary trees of elements whose depths depend on thelevel. This partiular queue is represented by a stak of three substaks.A. The underlying skeleton of this struture is a binary tree (or two binary trees) of triples.The redundant binary number system is extended so that it an distribute work along thesetrees by adding an extra digit.Kaplan, Okasaki, and Tarjan [21℄ simpli�ed these data strutures at the expense of makingthe time bounds amortized rather than worst ase and using assignment, thus obtaining aonuently persistent data struture whih is not purely funtional. The key idea underlyingtheir data struture is to relax the rigid onstraint of maintaining regularity. Instead, theysuggest to \improve" the representation of a deque q with full or empty pre�x when we tryto push or pop an element from it. Similarly, with full or empty suÆx. This improvementin the representation of q is visible to all deques that ontain q as a subdeque at somelevel and prevents from pushing into deques with full pre�xes or popping from deques withempty pre�xes from happening too often.

www.manaraa.com

1-24More spei�ally, say we push into a deque q with full pre�x. Then we �rst ejet twoelement from this pre�x, make a pair ontaining them, and push the pair reursively intohild(q). Let the result of the reursive push be hild0(q). We then hange the representationof q so that it has a new pre�x whih ontains all the elements in the pre�x of q but thetwo whih we ejeted, and its hild deque is hild0(q). The suÆx of q does not hange.Finally we perform the push into q by reating a new queue q0 that has the same suÆxand hild deque as q, but has a new pre�x that ontains the elements in the pre�x of qtogether with the new element. A areful but simple analysis shows that eah operation inthis implementation takes O(1) amortized time. By extending this idea, Kaplan, Okasaki,and Tarjan managed to onstrut atenable deques using only onstant size bu�ers as thebasi building bloks.1.5 Conluding remarks and open questionsMuh progress have been made on persistent data strutures sine the seminal paper ofDrisoll et. al. [18℄. This progress has three folds: In developing general tehniques to makeany data struture persistent, in making spei� data strutures persistent, and in emerg-ing algorithmi appliations. Tehniques developed to address these hallenges sometimesproved useful for other appliations as well.This algorithmi �eld still omprise intriguing hallenges. In developing general teh-niques to make data strutures persistent, a notable hallenge is to �nd a way to makethe time slowdown of the node splitting method worst ase. Another interesting researhtrak is how to restrit the operations that ombine versions in a onuently persistent set-ting so that better time bounds, or simpler simulations, are possible. We also believe thatthe tehniques and data strutures developed in this �eld would prove useful for numerousforthoming appliations.AknowledgementThis work was supported, in part, by the Israel Siene Foundation (ISF) under grant548/00.Referenes[1℄ S. Alstrup, G. S. Brodal, I. L. G�rtz, and T. Rauhe. Time and spae eÆient multi-method dispathing. In Pro. 8th Sandinavian Workshop on Algorithm Theory,volume 2368 of Leture Notes in Computer Siene, pages 20{29. Springer, 2002.[2℄ M. A. Bender, R. Cole, E. D. Demaine, M. Farah-Colton, and J. Zito. Two simpli�edalgorithms for maintaining order in a list. In Pro. 10th Annual European Symposiumon Algorithms (ESA 2002), volume 2461 of Leture Notes in Computer Siene,pages 152{164. Springer, 2002.[3℄ A. Boroujerdi and B. Moret. Persistene in omputational geometry. In Pro. 7thCanadian Conf. Comp. Geometry (CCCG 95), pages 241{246, 1995.[4℄ P. Bozanis, N. Kitsios, C. Makris, and A. Tsakalidis. The spae-optimal version ofa known retangle enlosure reporting algorithm. Information Proessing Letters,61(1):37{41, 1997.[5℄ G. S. Brodal. Partially persistent data strutures of bounded degree with onstantupdate time. Nordi Journal of Computing, 3(3):238{255, 1996.

www.manaraa.com

Persistent data strutures 1-25[6℄ G. S. Brodal and C. Okasaki. Optimal purely funtional priority queues. Journal ofFuntional Programming, 6(6):839{858, 1996.[7℄ A. L. Buhsbaum and R. E. Tarjan. Conuently persistant deques via data struturalbootstrapping. J. of Algorithms, 18:513{547, 1995.[8℄ B. Chazelle. How to searh in history. Information and ontrol, 64:77{99, 1985.[9℄ M. J. Clany and D. E. Knuth. A programming and problem-solving seminar. TehnialReport STAN-CS-77-606, Department of Computer Siene, Stanford University, PaloAlto, 1977.[10℄ R. Cole. Searhing and storing similar lists. J. of Algorithms, 7:202{220, 1986.[11℄ P. F. Dietz and D. D. Sleator. Two algorithms for maintaining order in a list. In Pro.19th Annual ACM Symposium on Theory of Computing, pages 365{372, 1987.[12℄ Paul F. Dietz. Fully persistent arrays. In Pro. 1st Worksh. Algorithms and DataStrutures (WADS 1989), volume 382 of Leture Notes in Computer Siene, pages67{74. Springer, 1989.[13℄ Paul F. Dietz and Rajeev Raman. Persistene, amortization and randomization. InPro. 2nd annual ACM-SIAM symposium on Disrete algorithms, pages 78{88.Soiety for Industrial and Applied Mathematis, 1991.[14℄ M. Dietzfelbinger, A. Karlin, K. Mehlhorn, M. Meyer auf der Heide, H. Rohnert,and R.E. Tarjan. Dynami perfet hashing: Upper and lower bounds. Siam J. onComputing, 23(4):738{761, 1994.[15℄ D. P. Dobkin and R. J. Lipton. Multidimensional searhing problems. Siam J. onComputing, 5(2):181{186, 1976.[16℄ D. P. Dobkin and J. I. Munro. EÆient uses of the past. J. of Algorithms, 6:455{465,1985.[17℄ J. Drisoll, D. Sleator, and R. Tarjan. Fully persistent lists with atenation. Journalof the ACM, 41(5):943{959, 1994.[18℄ J. R. Drisoll, N. Sarnak, D. Sleator, and R. Tarjan. Making data strutures persistent.J. of Computer and System Siene, 38:86{124, 1989.[19℄ Amos Fiat and Haim Kaplan. Making data strutures onuently persistent. Journalof Algorithms, 48(1):16{58, 2003. Symposium on Disrete Algorithms.[20℄ P. Gupta, R. Janardan, H. M. Smid, and B. DasGupta. The retangle enlosureand point-dominane problems revisited. International Journal of ComputationalGeometry and Appliations, 7(5):437{455, 1997.[21℄ H. Kaplan, C. Okasaki, and R. E. Tarjan. Simple onuently persistent atenable lists.Siam J. on Computing, 30(3):965{977, 2000.[22℄ H. Kaplan and R. E. Tarjan. Purely funtional representations of atenable sorted lists.In Pro. 28th Annual ACM Symposium on Theory of Computing, pages 202{211.ACM Press, 1996.[23℄ H. Kaplan and R. E. Tarjan. Purely funtional, real-time deques with atenation.Journal of the ACM, 46(5):577{603, 1999.[24℄ Haim Kaplan, Nira Shafrir, and Robert Endre Tarjan. Meldable heaps and booleanunion-�nd. In Pro. 34th Annual ACM Symposium on Theory of Computing(STOC), pages 573{582, 2002.[25℄ N. Kitsios and A. Tsakalidis. Spae redution and an extension for a hidden lineelimination algorithm. Computational Geometry, 6(6):397{404, 1996.[26℄ E. M. MCreight. Priority searh trees. Siam J. on Computing, 14:257{276, 1985.[27℄ O. Nurmi. A fast line sweep algorithm for hidden line elimination. BIT, 25(3):466{472,1985.[28℄ C. Okasaki. Amortization, lazy evaluation, and persistene: Lists with atenationvia lazy linking. In IEEE Symposium on Foundations of Computer Siene, pages

www.manaraa.com

1-26646{654, 1995.[29℄ M. H. Overmars. Searhing in the past, I. Tehnial Report RUU-CS-81-7, Departmentof Computer Siene, University of Utreht, Utreht,The Netherlands, 1981.[30℄ N. Sarnak and R. E. Tarjan. Planar point loation using persistent searh trees.Communiations of the ACM, 29(7):669{679, 1986.[31℄ R. E. Tarjan. Data Strutures and Network algorithms. SIAM, Philadelphia, 1982.[32℄ R. E. Tarjan and J. Van Leeuwen. Worst ase analysis of set union algorithms. Journalof the ACM, 31:245{281, 1984.[33℄ P. van Emde Boaz. Preserving order in a forest in less than logarithmi time. Infor-mation Proessing Letters, 6(3):80{82, 1977.[34℄ P. van Emde Boaz, R. Kaas, and E. Zijlstra. Design and implementation of an eÆientpriority queue. Mathematial Systems Theory, 10:99{127, 1977.

www.manaraa.com

Indexarraypersistent, 1-12{1-13binary dispathing problem, 1-5{1-7bridge olor problem, 1-6ompressed path method, 1-17Direted Ayli Graphe�etive depth, 1-3fat node method, 1-2, 1-9{1-10�nger searh treepersistent, 1-4full path method, 1-14hidden line elimination, 1-8hidden surfae removal, 1-8node opying method, 1-2, 1-10{1-11node splitting method, 1-2, 1-11{1-12pedigree, 1-13persistent data strutureonuently, 1-1, 1-13{1-18fully, 1-1partially, 1-1planar point loation, 1-4queuepersistent, 1-18{1-24retangular enlosure problem, 1-8redundant ounters, 1-4stakpersistent, 1-18tree olor problem, 1-6
1-27

