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tionThink of the initial 
on�guration of a data stru
ture as version zero, and of every subsequentupdate operation as generating a new version of the data stru
ture. Then a data stru
tureis 
alled persistent if it supports a

ess to all versions and it is 
alled ephemeral otherwise.The data stru
ture is partially persistent if all versions 
an be a

essed but only the newestversion 
an be modi�ed. The stru
ture is fully persistent if every version 
an be botha

essed and modi�ed. The data stru
ture is 
on
uently persistent if it is fully persistentand has an update operation whi
h 
ombines more than one version. Let the version graphbe a dire
ted graph where ea
h node 
orresponds to a version and there is an edge from nodeV1 to a node V2 if and only of V2 was 
reated by an update operation to V1. For partiallypersistent data stru
ture the version graph is a path; for fully persistent data stru
ture theversion graph is a tree; and for 
on
uently persistent data stru
ture the version graph is adire
ted a
y
li
 graph (DAG).A notion related to persisten
e is that of purely fun
tional data stru
tures. (See Chapter46 by Okasaki in this handbook.) A purely fun
tional data stru
ture is a data stru
turethat 
an be implemented without using an assignment operation at all (say using just thefun
tions 
ar, 
dr, and 
ons, of pure lisp). Su
h a data stru
ture is automati
ally per-sistent. The 
onverse, however, is not true. There are data stru
tures whi
h are persistentand perform assignments.Sin
e the seminal paper of Dris
oll, Sarnak, Sleator, and Tarjan (DSST) [18℄, and over thepast �fteen years, there has been 
onsiderable development of persistent data stru
tures.Persistent data stru
tures have important appli
ations in various areas su
h as fun
tionalprogramming, 
omputational geometry and other algorithmi
 appli
ation areas.The resear
h on persistent data stru
tures splits into two main tra
ks. The �rst tra
k is ofdesigning general transformations that would make any ephemeral data stru
ture persistent0-8493-8597-0/01/$0.00+$1.50
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1-2while introdu
ing low overhead in spa
e and time. The se
ond tra
k is on how to makespe
i�
 data stru
tures, su
h as lists and sear
h trees, persistent. The seminal work ofDSST mainly addresses the question of �nding a general transformation to make any datastru
ture persistent. In addition DSST also address the spe
ial 
ase of making sear
h treespersistent in parti
ular. For sear
h trees they obtain a result whi
h is better than what onegets by simply applying their general transformation to, say, red-bla
k trees.There is a naive s
heme to make any data stru
ture persistent. This s
heme performs theoperations exa
tly as they would have been performed in an ephemeral setting but beforeea
h update operation it makes new 
opies of all input versions. Then it performs theupdate on the new 
opies. This s
heme is obviously ineÆ
ient as it takes time and spa
ewhi
h is at least linear in the size of the input versions.When designing an eÆ
ient general transformation to make a data stru
ture persistentDSST get started with the so 
alled fat node method . In this method you allow ea
h �eldin the data stru
ture to store more than one value, and you tag ea
h value by the versionwhi
h assigned it to the �eld. This method is easy to apply when we are interested only in apartially persistent data stru
ture. But when the target is a fully persistent data stru
ture,the la
k of linear order on the versions already makes navigation in a naive implementationof the fat node data stru
ture ineÆ
ient. DSST manage to limit the overhead by linearizingthe version tree using a data stru
ture of Dietz and Sleator so we 
an determine fast whetherone version pre
edes another in this linear order.Even when implemented 
arefully the fat node method has logarithmi
 (in the numberof versions) time overhead to a

ess or modify a �eld of a parti
ular node in a parti
ularversion. To redu
e this overhead DSST des
ribed two other methods to make data stru
turespersistent. The simpler one is the node 
opying method whi
h is good to obtain partiallypersistent data stru
tures. For obtaining fully persistent data stru
tures they suggest thenode splitting method. These methods simulate the fat node method using nodes of 
onstantsize. They show that if nodes are large enough (but still of 
onstant size) then the amountof overhead is 
onstant per a

ess or update of a �eld in the ephemeral data stru
ture.These general te
hniques suggested by DSST have some limitations. First, all thesemethods, in
luding even the fat node method, fail to work when the data stru
ture hasan operation whi
h 
ombines more than one version, and 
on
uent persisten
e is desired.Furthermore, the node splitting and node 
opying methods apply only to pointer based datastru
tures (no arrays) where ea
h node is of 
onstant size. Sin
e the simulation has to addreverse pointers to the data stru
ture the methods require nodes to be of bounded indegreeas well. Last, the node 
oping and the node splitting te
hniques have O(1) amortizedoverhead per update or a

ess of a �eld in the ephemeral data stru
ture. DSST left openthe question of how to make this overhead O(1) in the worst 
ase.These limitations of the transformations of DSST were addressed by subsequent work.Dietz and Raman [13℄ and Brodal [5℄ addressed the question of bounding the worst 
aseoverhead of an a

ess or an update of a �eld. For partial persisten
e Brodal gives a wayto implement node 
oping su
h that the overhead is O(1) in the worst 
ase. For fullypersisten
e, the question of whether there is a transformation with O(1) worst 
ase overheadis still unresolved.The question of making data stru
tures that use arrays persistent with less than loga-rithmi
 overhead per step has been addressed by Dietz [12℄. Dietz shows how to augmentthe fat node method with a data stru
ture of van Emde Boaz, Kaas, and Zijlstra [34, 33℄to make an eÆ
ient fully persistent implementation of an array. With this implementation,if we denote by m the number of updates, then ea
h a

ess takes O(log logm) time, anupdate takes O(log logm) expe
ted amortized time and the spa
e is linear in m. Sin
e we
an model the memory of a RAM by an array, this transformation of Dietz 
an make any
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Persistent data stru
tures 1-3data stru
ture persistent with slowdown double logarithmi
 in the number of updates tomemory.The question of how to make a data stru
ture with an operation that 
ombines versions
on
uently persistent has been re
ently addressed by Fiat and Kaplan [19℄. Fiat and Kaplanpoint out the fundamental di�eren
e between fully persisten
e and 
on
uently persisten
e.Consider the naive s
heme des
ribed above and assume that ea
h update operation 
reates
onstantly many new nodes. Then, as long as no update operation 
ombines more thanone version, the size of any version 
reated by the naive s
heme is linear in the numberof versions. However when updates 
ombine versions the size of a single version 
an beexponential in the number of versions. This happens in the simple 
ase where we update alinked list by 
on
atenating it to itself n times. If the initial list is of size one then the �nallist after n 
on
atenations is of size 2n.Fiat and Kaplan prove by simple information theoreti
 argument that for any generalredu
tion to make a data stru
ture 
on
uently persistent there is a DAG of versions whi
h
annot be represented using only 
onstant spa
e per assignment. Spe
i�
ally, Fiat andKaplan de�ne the e�e
tive depth of the DAG whi
h is the logarithm of the maximum numberof di�erent paths from the root of the DAG to any parti
ular vertex. They show that thenumber of bits that may be required for assignment is at least as large as the e�e
tive depthof the DAG. Fiat and Kaplan also give several methods to make a data stru
ture 
on
uentlypersistent. The simplest method has time and spa
e overhead proportional to the depthof the DAG. Another method has overhead proportional to the e�e
tive depth of the DAGand degenerate to the fat node method when the DAG is a tree. The last method redu
ethe time overhead to be polylogarithmi
 in either the depth of the DAG or the e�e
tivedepth of the DAG at the 
ost of using randomization and somewhat more spa
e.The work on making spe
i�
 data stru
tures persistent has started even prior to the workof DSST. Dobkin and Munro [16℄ 
onsidered a persistent data stru
ture for 
omputing therank of an obje
t in an ordered set of elements subje
t to insertions and deletions. Overmars[29℄ improved the time bounds of Dobkin and Munro and further redu
ed the storage forthe 
ase where we just want to determine whether an element is in the 
urrent set or not.Chazelle [8℄ 
onsidered �nding the prede
essor of a new element in the set. As we alreadymentioned DSST suggest two di�erent ways to make sear
h trees persistent. The moreeÆ
ient of their methods has O(logn) worst 
ase time bound and O(1) worst 
ase spa
ebound for an update.A 
onsiderable amount of work has been devoted to the question of how to make 
on-
atenable double ended queues (deques) 
on
uently persistent. Without 
atenation, one
an make deques fully persistent either by the general te
hniques of DSST or via real-timesimulation of the deque using sta
ks (see [23℄ and the referen
es there). On
e 
atenation isadded, the problem of making sta
ks or deques persistent be
omes mu
h harder, and themethods mentioned above fail. A straightforward use of balan
ed trees gives a representa-tion of persistent 
atenable deques in whi
h an operation on a deque or deques of total size ntakes O(logn) time. Dris
oll, Sleator, and Tarjan [17℄ 
ombined a tree representation withseveral additional ideas to obtain an implementation of persistent 
atenable sta
ks in whi
hthe kth operation takes O(log log k) time. Bu
hsbaum and Tarjan [7℄ used a re
ursive de-
omposition of trees to obtain two implementations of persistent 
atenable deques. The �rsthas a time bound of 2O(log� k) and the se
ond a time bound of O(log� k) for the kth operation,where log� k is the iterated logarithm, de�ned by log(1) k = log2 k; log(i) k = log log(i�1) kfor i > 1, and log� k = minfi j log(i) k � 1g.Finally, Kaplan and Tarjan [23℄ gave a real-time, purely fun
tional (and hen
e 
on
uentlypersistent) implementation of deques with 
atenation in whi
h ea
h operation takes O(1)
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1-4time in the worst 
ase. A related stru
ture whi
h is simpler but not purely fun
tionaland has only amortized 
onstant time bound on ea
h operation has been given by Kaplan,Okasaki, and Tarjan [21℄. A key ingredient in the results of Kaplan and Tarjan and theresult of Kaplan, Okasaki, and Tarjan is an algorithmi
 te
hnique related to the redundantdigital representations devised to avoid 
arry propagation in binary 
ounting [9℄. If removingelements from one side of the deque is disallowed Okasaki [28℄ suggested another 
on
uentlypersistent implementation with O(1) time bound for every operation. This te
hnique isrelated to path reversal te
hnique whi
h is used in some union-�nd data stru
tures [32℄.Sear
h trees also support 
atenation and split operations [31℄ and therefore 
on
uentpersisten
e implementation of sear
h trees is natural to ask for. Sear
h tree 
an be madepersistent and even 
on
uently persistent using the path 
opying te
hnique [18℄. In path
oping you 
opy every node that 
hanges while updating the sear
h tree and its an
estors.Sin
e updates to sear
h trees a�e
t only a single path, this te
hnique results in 
opying atmost one path and thereby 
osts logarithmi
 time and spa
e per update. Making �ngersear
h trees 
on
uently persistent is more of a 
hallenge, as we want to prevent the updateoperation to propagate up on the leftmost and rightmost spines of the tree. This allowsto make an update at distan
e d from the beginning or end of the list in O(log d) time.Kaplan and Tarjan [22℄ used the redundant 
ounting te
hnique to make �nger sear
h tree
on
uently persistent. Using the same te
hnique they also managed to redu
e the time(and spa
e) overhead of 
atenation to be O(log logn) where n is the number of elements inthe larger tree.The stru
ture of the rest of this paper is as follows. Se
tion 1.2 des
ribes few algorithmsthat use persistent data stru
tures to a
hieve their best time or spa
e bounds. Se
tion1.3 surveys the general methods to make data stru
tures persistent. Se
tion 1.4 gives thehighlights underlying persistent 
on
atenable deques. We 
on
lude in Se
tion 1.5.1.2 Algorithmi
 appli
ations of persistent data stru
turesThe basi
 
on
ept of persisten
e is general and may arise in any 
ontext where one maintainsa re
ord of history for ba
kup and re
overy, or for any other purpose. However, the mostremarkable 
onsequen
es of persistent data stru
tures are spe
i�
 algorithms that a
hievetheir best time or spa
e 
omplexities by using a persistent data stru
ture. Most su
halgorithms solve geometri
 problems but there are also examples from other �elds. In thisse
tion we des
ribe few of these algorithms.The most famous geometri
 appli
ation is the algorithm for planar point lo
ation bySarnak and Tarjan [30℄ that triggered the development of the whole area. In the planarpoint lo
ation problem we are given a subdivision of the Eu
lidean plane into polygonsby n line segments that interse
t only at their endpoints. The goal is to prepro
ess theseline segments and build a data stru
ture su
h that given a query point we 
an eÆ
ientlydetermine whi
h polygon 
ontains it. As 
ommon in this kind of 
omputational geometryproblems, we measure a solution by three parameters: The spa
e o

upied by the datastru
ture, the prepro
essing time, whi
h is the time it takes to build the data stru
ture,and the query time.Sarnak and Tarjan suggested the following solution (whi
h builds upon previous ideas ofDobkin and Lipton [15℄ and Cole [10℄). We partition the plane into verti
al slabs by drawinga verti
al line through ea
h vertex (interse
tion of line segments) in the planar subdivision.Noti
e that the line segments of the subdivision interse
ting a slab are totally ordered. Nowit is possible to answer a query by two binary sear
hes. One binary sear
h lo
ates the slabthat 
ontains the query, and another binary sear
h lo
ates the segment pre
eding the query
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tures 1-5point within the slab. If we asso
iate with ea
h segment within a slab, the polygon justabove it, then we have lo
ated the answer to the query. If we represent the slabs by a binarysear
h tree from left to right, and the segments within ea
h slab by a binary sear
h treesorted from bottom to top, we 
an answer a query in O(logn) time.1 However if we builda separate sear
h tree for ea
h slab then the worst 
ase spa
e requirement is 
(n2), when
(n) lines interse
t 
(n) slabs.The key observation is that the sets of line segments interse
ting adja
ent slabs are similar.If we have the set of one parti
ular slab we 
an obtain the set of the slab to its right bydeleting segments that end at the boundary between these slabs, and inserting segmentsthat start at that boundary. As we sweep all the slabs from left to right we get that intotal there are n deletions and n insertions; one deletion and one insertion for every linesegment. This observation redu
es the planar point lo
ation to the problem of maintainingpartially persistent sear
h trees. Sarnak and Tarjan [30℄ suggested a simple implementationof partially persistent sear
h tree where ea
h update takes O(logn) amortized time and
onsumes O(1) amortized spa
e. Using these sear
h trees they obtained a data stru
turefor planar point lo
ation that requires O(n) spa
e, takes O(n logn) time to build, and 
ananswer ea
h query in O(logn) time.The algorithm of Sarnak and Tarjan for planar point lo
ation in fa
t suggests a generalte
hnique for transforming a 2-dimensional geometri
 sear
h problem into a persistent datastru
ture problem. Indeed several appli
ations of this te
hnique have emerged sin
e Sarnakand Tarjan published their work [3℄. As another example 
onsider the problem of 3-sidedrange sear
hing in the plane. In this problem we prepro
ess a set of n points in the planeso given a triple (a; b; 
) with a � b we 
an eÆ
iently reports all points (x; y) 2 S su
hthat a � x � b, and y � 
. The priority sear
h tree of M
Creight [26℄ yields a solution tothis problem with O(n) spa
e, O(n logn) prepro
essing time, and O(logn) time per query.Using persistent data stru
ture, Boroujerdi and Moret [3℄ suggest the following alternative.Let y1 � y2 � � � � � yn be the y-
oordinates of the points in S in sorted order. For ea
hi, 1 � i � n we build a sear
h tree 
ontaining all i points (x; y) 2 S where y � yi, andasso
iate that tree with yi. Given this 
olle
tion of sear
h tree we 
an answer a query(a; b; 
) in O(logn) time by two binary sear
hes. One sear
h uses the y 
oordinate of thequery point to �nd the largest i su
h that yi � 
. Then we use the sear
h tree asso
iatedwith yi to �nd all points (x; y) in it with a � x � b. If we use partially persistent sear
htrees then we 
an build the trees using n insertions so the spa
e requirement is O(n), andthe prepro
essing time is O(n logn).This te
hnique of transforming a 2-dimensional geometri
 sear
h problem into a persistentdata stru
ture problem require only a partially persistent data stru
ture. This is sin
e weonly need to modify the last version while doing the sweep. Appli
ations of fully persistentdata stru
tures are less 
ommon. However few interesting ones do exists.One su
h algorithm that uses a fully persistent data stru
ture is the algorithm of Alstrupet. al. for the binary dispat
hing problem [1℄. In obje
t oriented languages there is ahierar
hy of 
lasses (types) and method names are overloaded. I.e. a method may havedi�erent implementations for di�erent types of its arguments. At run time when a methodis invoked, the most spe
i�
 implementation whi
h is appropriate for the arguments hasto be a
tivated. This is a 
riti
al 
omponent of exe
ution performan
e in obje
t orientedlanguages. Here is a more formal spe
i�
ation of the problem.We model the 
lass hierar
hy by a tree T with n nodes, ea
h representing a 
lass. A1Note that testing whether a point is above or below a line takes O(1) time.
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lass A whi
h is a des
endant of B is more spe
i�
 than B and we denote this relation byA � B or A < B if we know that A 6= B. In addition we have m di�erent implementationsof methods, where ea
h su
h implementation is spe
i�ed by a name, number of arguments,and the type of ea
h argument. We shall assume that m > n, as if that is not the 
asewe 
an map nodes that do not parti
ipate in any method to their 
losest an
estor thatdoes parti
ipate in O(n) time. A method invo
ation is a query of the form s(A1; : : : ; Ad)where s is a method name that has d arguments with types A1; : : : ; Ad, respe
tively. Animplementation s(B1; : : : ; Bd) is appli
able for s(A1; : : : ; Ad) if Ai � Bi for every 1 � i � d.The most spe
i�
 method whi
h is appli
able for s(A1; : : : ; Ad) is the method s(B1; : : : ; Bd)su
h that Ai � Bi for 1 � i � d, and for any other implementation s(C1; : : : ; Cd) whi
h isappli
able for s(A1; : : : ; Ad) we have Bi � Ci for 1 � i � d. Note that for d > 1 this maybe ambiguous, i.e. we might have two appli
able methods s(B1; : : : ; Bd) and s(C1; : : : ; Cd)where Bi 6= Ci, Bj 6= Cj , Bi � Ci and Cj � Bj . The dispat
hing problem is to �nd for ea
hinvo
ation the most spe
i�
 appli
able method if it exists. If it does not exist or in 
ase ofambiguity, \no appli
able method" or \ambiguity" has to be reported, respe
tively. In thebinary dispat
hing problem, d = 2, i.e. we assume that all implementations and invo
ationshave two arguments.Alstrup et. al. des
ribe a data stru
ture for the binary dispat
hing problem that useO(m) spa
e, O(m(log logm)2) prepro
essing time and O(logm) query time. They obtainthis data stru
ture by redu
ing the problem to what they 
all the bridge 
olor problem. Inthe bridge 
olor problem the input 
onsists of two trees T1 and T2 with edges, 
alled bridges,
onne
ting verti
es in T1 to verti
es in T2. Ea
h bridge is 
olored by a subset of 
olors fromC. The goal is to 
onstru
t a data stru
ture whi
h allows queries of the following form.Given a triple (v1; v2; 
) where v1 2 T1, v2 2 T2, and 
 2 C �nds the bridge (w1; w2) su
hthat1. v1 � w1 in T1, and v2 � w2 in T2, and 
 is one of the 
olors asso
iated with(w1; w2).2. There is no other su
h bridge (w0; w00) with v2 � w00 < w2 or v1 � w0 < w1.If there is no bridge satisfying the �rst 
ondition the query just returns nothing and if thereis a bridge satisfying the �rst 
ondition but not the se
ond we report \ambiguity". Weredu
e the binary dispat
hing problem to the bridge 
olor problem by taking T1 and T2 tobe 
opies of the 
lass hierar
hy T of the dispat
hing problem. The set of 
olors is the set ofdi�erent method names. (Re
all that ea
h method name may have many implementationsfor di�erent pairs of types.) We make a bridge (v1; v2) between v1 2 T1 and v2 2 T2whenever there is an implementation of some method for 
lasses v1 and v2. We 
olor thebridge by all names of methods for whi
h there is an implementation spe
i�
 to the pairof type (v1; v2). It is easy to see now that when we invoke a method s(A1; A2) the mostspe
i�
 implementation of s to a
tivate 
orresponds to the bridge 
olored s 
onne
ting anan
estor of v1 to an an
estor of v2 whi
h also satis�es Condition (2) above.In a way whi
h is somewhat similar to the redu
tion between stati
 two dimensionalproblem to a dynami
 one dimensional problem in the plane sweep te
hnique above, Alstrupet. al. redu
e the stati
 bridge 
olor problem to a similar dynami
 problem on a single treewhi
h they 
all the tree 
olor problem. In the tree 
olor problem you are given a tree T ,and a set of 
olors C. At any time ea
h vertex of T has a set of 
olors asso
iated with it.We want a data stru
ture whi
h supports the updates, 
olor(v,
): whi
h add the 
olor 
 tothe set asso
iated with v; and un
olor(v,
) whi
h deletes the 
olor 
 from the set asso
iatedwith v. The query we support is given a vetrex v and a 
olor 
, �nd the 
losest an
estor ofv that has 
olor 
.
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tures 1-7The redu
tion between the bridge 
olor problem and the tree 
olor problem is as follows.For ea
h node v 2 T1 we asso
iate an instan
e `v of the tree 
olor problem where theunderlying tree is T2 and the set of 
olors C is the same as for the bridge 
olor problem.The label of a node w 2 T2 in `v 
ontains 
olor 
 if w is an endpoint of a bridge with 
olor 
whose endpoint in T1 is an an
estor of v. For ea
h pair (w; 
) where w 2 T2 and 
 is a 
olorasso
iated with w in `v we also keep the 
losest an
estor v0 to v in T1 su
h that there is abridge (v0; w) 
olored 
. We 
an use a large (sparse) array indexed by pairs (w; 
) to mapea
h su
h pair to its asso
iated vertex. We denote this additional data stru
ture asso
iatedwith v by av. Similarly for ea
h vertex u 2 T2 we de�ne an instan
e `u of the tree 
olorproblem when the underlying tree is T1, and the asso
iated array au.We 
an answer a query (v1; v2; 
) to the bridge 
olor data stru
ture as follows. We querythe data stru
ture `v1 with v2 to see if there is an an
estor of v2 
olored 
 in the 
oloringof T2 de�ned by `v1 . If so we use the array av1 to �nd the bridge (w1; w2) 
olored 
 wherev1 � w1 and v2 � w2, and w1 is as 
lose as possible to v1. Similarly we use the datastru
tures `v2 and av2 to �nd the bridge (w1; w2) 
olored 
 where v1 � w1 and v2 � w2,and w2 is as 
lose as possible to v2, if it exists. Finally if both bridges are identi
al thenwe have the answer to the query (v1; v2; 
) to the bridge 
olor data stru
ture. Otherwise,either there is no su
h bridge or there is an ambiguity (when the two bridges are di�erent).The problem of this redu
tion is its large spa
e requirement if we represent ea
h datastru
ture `v, and av for v 2 T1 [ T2 independently.2 The 
ru
ial observation though is thatthese data stru
tures are strongly related. Thus if we use a dynami
 data stru
ture forthe tree 
olor problem we 
an obtain the data stru
ture 
orresponding to w from the datastru
ture 
orresponding to its parent using a small number of modi�
ations. Spe
i�
ally,suppose we have generated the data stru
tures `v and av for some v 2 T1. Let w be a 
hildof v in T1. We 
an 
onstru
t `w by traversing all bridges whose one endpoint is w. For ea
hsu
h bridge (w; u) 
olored 
, we perform 
olor(u,
), and update the entry of (u; 
) in av to
ontain w.So if we were using fully persistent arrays and a fully persistent data stru
ture for the tree
olor problem we 
an 
onstru
t all data stru
tures mentioned above while doing only O(m)updates to these persistent data stru
tures. Alstrup et. al. [1℄ des
ribe a data stru
ture forthe tree 
olor problem where ea
h update takes O(log logm) expe
ted time and query timeis O(logm= log logm). The spa
e is linear in the sum of the sizes of the 
olor-sets of theverti
es. To make it persistent without 
onsuming too mu
h spa
e Alstrup et. al. [1℄ suggesthow to modify the data stru
ture so that ea
h update makes O(1) memory modi�
ationsin the worst 
ase (while using somewhat more spa
e). Then by applying the te
hnique ofDietz [12℄ (see also Se
tion 1.3.3) to this data stru
ture we 
an make it fully persistent.The time bounds for updates and queries in
rease by a fa
tor of O(log logm), and thetotal spa
e is O(jCjm). Similarly, we 
an make the asso
iated arrays av fully persistent.The resulting solution to the binary dispat
hing problem takes O(m(log logm)2) time to
onstru
t, requires O(jCjm) spa
e and support a query in O(logm) time. Sin
e the numberof memory modi�
ations while 
onstru
ting the data stru
ture is only O(m) Alstrup et.al. also suggest that the spa
e 
an be further redu
es to O(m) by maintaining the entirememory as a dynami
 perfe
t hashing data stru
ture.Fully persistent lists proved useful in redu
ing the spa
e requirements of few three di-mensional geometri
 algorithms based on the sweep line te
hnique, where the items on the2We 
an 
ompress the sparse arrays using hashing but even if we do that the spa
e requirement may bequadrati
 in m.
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1-8sweep line have se
ondary lists asso
iated with them. Kitsios and Tsakalidis [25℄ 
onsideredhidden line elimination and hidden surfa
e removal. The input is a 
olle
tion of (noninterse
ting) polygons in three dimensions. The hidden line problem asks for the parts ofthe edges of the polygons that are visible from a given viewing position. The hidden surfa
eremoval problem asks to 
ompute the parts of the polygons that are visible from the viewingposition.An algorithm of Nurmi [27℄ solves these problems by proje
ting all polygons into a 
ol-le
tion of possible interse
ting polygons in the plane and then sweeping this plane, stoppingat any vertex of a proje
ted polygone, or 
rossing point of a pair of proje
ted edges. Whenthe sweep stops at su
h point, the visibility status of its in
ident edges is determined. Thealgorithm maintain a binary balan
ed tree whi
h stores the edges 
ut by the sweep line insorted order along the sweep line. With ea
h su
h edge it also maintains another balan
edbinary tree over the fa
es that 
over the interval between the edge and its su

essor edgeon the sweep line. These fa
es are ordered in in
reasing depth order along the line of sight.An a
tive edge is visible if the topmost fa
e in its list is di�erent from the topmost fa
e inthe list of its prede
essor. If n is the number of verti
es of the input polygons and I is thenumber of interse
tions of edges on the proje
tion plane then the sweep line stops at n+ Ipoints. Looking more 
arefully at the updates one has to perform during the sweep, weobserve that a 
onstant number of update operations on balan
ed binary sear
h trees has tobe performed non destru
tively at ea
h point. Thus, using fully persistent balan
ed sear
htrees one 
an implement the algorithm in O((n+ I) log n) time and O(n+ I) spa
e. Kitsiosand Tsakalidis also show that by rebuilding the data stru
ture from s
rat
h every O(n)updates we 
an redu
e the spa
e requirement to O(n) while retaining the same asymptoti
running time.Similar te
hnique has been used by Bozanis et. al. [4℄ to redu
e the spa
e requirement ofan algorithm of Gupta et. al. [20℄ for the re
tangular en
losure reporting problem. In thisproblem the input is a set S of n re
tangles in the plane whose sides are parallel to the axes.The algorithm has to report all pairs (R;R0) of re
tangles where R;R0 2 S and R en
losesR0. The algorithm uses the equivalen
e between the re
tangle en
losure reporting problemand the 4-dimensional dominan
e problem. In the 4-dimensional dominan
e problem theinput is a set of n points P in four dimensional spa
e. A point p = (p1; p2; p3; p4) dominatesp0 = (p01; p02; p03; p04) if and only if pi � p0i for i = 1; 2; 3; 4. We ask for an algorithm to reportall dominating pairs of points, (p; p0), where p; p0 2 P , and p dominates p0. The algorithmof Gupta at. el. �rst sorts the points by all 
oordinates and translates the 
oordinates toranks so that they be
ome points in U4 where U = f0; 1; 2; : : : ; ng. It then divides the setsinto two equal halves R and B a

ording to the forth 
oordinate (R 
ontains the points withsmaller forth 
oordinate). Using re
urren
e on B and on R it �nds all dominating pairs(p; p0) where p and p0 are either both in B or both in R. Finally it �nds all dominatingpairs (r; b) where r 2 R and b 2 B by iterating a plane sweeping algorithm on the threedimensional proje
tions of the points in R and B. During the sweep, for ea
h point in B, alist of points that it dominates in R is maintained. The size of these lists may potentiallybe as large as the output size whi
h in turn may be quadrati
. Bozanis et. al. suggest toredu
e the spa
e by making these lists fully persistent, whi
h are periodi
ally being rebuilt.1.3 General te
hniques for making data stru
tures persis-tentWe start in Se
tion 1.3.1 des
ribing the fat node simulation. This simulation allows to obtainfully persistent data stru
tures and has an optimal spa
e expansion but time slowdown
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tures 1-9logarithmi
 in the number of versions. Se
tion 1.3.2 des
ribes the node 
opying and thenode splitting methods that redu
e the time slowdown to be 
onstant while in
reasing thespa
e expansion only by a 
onstant fa
tor. In Se
tion 1.3.3 we address the question ofmaking arrays persistent. Finally in Se
tion 1.3.4 we des
ribe simulation that makes datastru
tures 
on
uently persistent.1.3.1 The fat node methodDSST �rst 
onsidered the fat node method . The fat node method works by allowing a �eldin a node of the data stru
ture to 
ontain a list of values. In a partial persistent setting weasso
iate �eld value x with version number i, if x was assigned to the �eld in the updateoperation that 
reated version i.3 We keep this list of values sorted by in
reasing versionnumber in a sear
h tree. In this method simulating an assignment takes O(1) spa
e, andO(1) time if we maintain a pointer to the end of the list. An a

ess step takes O(logm)time where m is the number of versions.The diÆ
ulty with making the fat node method work in a fully persistent setting is thela
k of total order on the versions. To eliminate this diÆ
ulty, DSST impose a total orderon the versions 
onsistent with the partial order de�ned by the version tree. They 
all thistotal order the version list. When a version i is 
reated it is inserted into the version listimmediately after its parent (in the version tree). This implies that the version list de�nesa preorder on the version tree where for any version i, the des
endants of i in the versiontree o

ur 
onse
utively in the version list, starting with i.The version list is maintained in a data stru
ture that given two versions x and y allowsto determine eÆ
iently whether x pre
edes y. Su
h a data stru
ture has been suggested byDietz and Sleator [11℄. (see also a simpler related data stru
ture by [2℄.) The main ideaunderlying these data stru
tures is to assign an integer label to ea
h version so that theselabels monotoni
ally in
rease as we go along the list. Some diÆ
ulty arises sin
e in orderto use integers from a polynomial range we o

asionally have to relabel some versions. ForeÆ
ient implementation we need to 
ontrol the amount of relabeling being done. We denotesu
h a data stru
ture that maintains a linear order subje
t to the operation insert(x; y)whi
h inserts x after y, and order(x; y) whi
h returns \yes" if x pre
edes y, an OrderMaintenan
e (OM) data stru
ture.As in the partial persisten
e 
ase we keep a list of version-value pairs in ea
h �eld. Thislist 
ontains a pair for ea
h value assigned to the �eld in any version. These pairs are ordereda

ording to the total order imposed on the versions as des
ribed above. We maintain theselists su
h that the value 
orresponding to �eld f in version i is the value asso
iated with thelargest version in the list of f that is not larger than i. We 
an �nd this version by 
arryingout a binary sear
h on the list asso
iated with the �eld using the OM data stru
ture to do
omparisons.To maintain these lists su
h that the value 
orresponding to �eld f in version i is the valueasso
iated with the largest version in the list of f that is not larger than i, the simulation ofan update in the fully persistent setting di�er slightly from what happens in the partiallypersistent 
ase. Assume we assign a value x to �eld f in an update that 
reates version i.(Assume for simpli
ity that this is the only assignment to f during this update.) First weadd the pair (i; x) to the list of pairs asso
iated with �eld f . Let i0 be the version following3If the update operation that 
reated version i assigned to a parti
ular �eld more than on
e we keeponly the value that was assigned last.
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1-10i in the version list (i.e. in the total order of all versions) and let i00 be the version followingi in the list asso
iated with f . ( If there is no version following i in one of these lists weare done.) If i00 > i0 then the addition of the pair (i; x) to the list of pairs asso
iated withf may 
hange the value of f in all versions between i0 and the version pre
eding i00 in theversion list, to be x. To �x that we add another pair (i0; y) to the list asso
iated with f ,where y is the value of f before the assignment of x to f . The overhead of the fat nodemethod in a fully persistent settings is O(logm) time and O(1) spa
e per assignment, andO(logm) time per a

ess step, where m is the number of versions. Next, DSST suggestedtwo methods to redu
e the logarithmi
 time overhead of the fat node method. The simplerone obtains a partially persistent data stru
ture and is 
alled node 
opying . To obtain afully persistent data stru
ture DSST suggested the node splitting method.1.3.2 Node 
opying and node splittingThe node-
oping and the node splitting methods simulate the fat node method using nodesof 
onstant size. Here we assume that the data stru
ture is a pointer based data stru
turewhere ea
h node 
ontains a 
onstant number of �elds. For reasons that will be
ome 
learshortly we also assume that the nodes are of 
onstant bounded in-degree, i.e. the numberof pointer �elds that 
ontains the address of any parti
ular node is bounded by a 
onstant.In the node 
opying method we allow nodes in the persistent data stru
ture to hold onlya �xed number of �eld values. When we run out of spa
e in a node, we 
reate a new 
opyof the node, 
ontaining only the newest value of ea
h �eld. Let d be the number of pointer�elds in an ephemeral node and let p be the maximum in-degree of an ephemeral node. Ea
hpersistent node 
ontains d �elds whi
h 
orresponds to the �elds in the ephemeral node, pprede
essor �elds, e extra �elds, where e is a suÆ
iently large 
onstant that we spe
ify later,and one �eld for a 
opy pointer.All persistent nodes whi
h 
orrespond to the same ephemeral node are linked togetherin a single linked list using the 
opy pointer. Ea
h �eld in a persistent node has a versionstamp asso
iated with it. As we go along the 
hain of persistent nodes 
orresponding toone ephemeral node then the version stamps of the �elds in one node are no smaller thanversion stamps of the �elds in the pre
eding nodes. The last persistent node in the 
hain is
alled live. This is the persistent node representing the ephemeral node in the most re
entversion whi
h we 
an still update. In ea
h live node we maintain prede
essor pointers. If xis a live node and node z points to x then we maintain in x a pointer z.We update �eld f in node v, while simulating the update operation 
reating version i asfollows. Let x be the live persistent node 
orresponding to v in the data stru
ture. If xalready 
ontains a value of �eld f that is asso
iated with version i then we overwrite thisvalue with the new value. Otherwise, if there is an empty extra �eld in x then we assignthe new value to this extra �eld, and mark it as a value asso
iated with original �eld f inversion i. If f is a pointer �eld whi
h now points to a node z, we update the 
orrespondingprede
essor pointer in z to point to x. In 
ase all extra �elds in x are used we 
opy x asfollows.We 
reate a new persistent node y, make the 
opy pointer of x point to y, store in ea
horiginal �eld in y the most re
ent value assigned to it, and mark these values with versionstamp i. In parti
ular, �eld f in node y stores its new value marked with version i. Forea
h pointer �eld in y we also update the 
orresponding prede
essor pointer to point to yrather than to x.Then we have to update ea
h �eld pointing to x in version i� 1 to point to y in versioni. We follow, in turn, ea
h prede
essor pointer in x. Let z be a node pointed to by su
h aprede
essor pointer. We identify the �eld pointing to x in z and update its value in version
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tures 1-11i to be y. We also update a prede
essor pointer in y to point to z. If the old value of thepointer to x in z is not marked with version i (in parti
ular this means that z has not been
opied) then we try to use an extra �eld to store the new version-value pair. If there isno free extra pointer in z we 
opy z as above. Then we update the �eld that points to xto point to y in the new 
opy of z. This sequen
e of node 
opying may 
as
ade, but sin
eea
h node is 
opied at most on
e4, the simulation of the update step must terminates. Inversion i, y is the live node 
orresponding to v.A simple analysis shows that if we use at least as many extra �elds as prede
essor �eldsat ea
h node (i.e. e � p) then the amortized number of nodes that are 
opied due to a singleupdate is 
onstant. Intuitively, ea
h time we 
opy a node we gain e empty extra �elds inthe live version that \pay" for the assignments that had to be made to redire
t pointers tothe new 
opy.A similar simulation 
alled the node splitting method makes a data stru
ture fully persis-tent with O(1) amortized overhead in time and spa
e. The details however are somewhatmore involved so we only sket
h the main ideas. Here, sin
e we need prede
essor pointers forany version5 it is 
onvenient to think of the prede
essor pointers as part of the ephemeraldata stru
ture, and to apply the simulation to the so 
alled augmented ephemeral datastru
ture.We represent ea
h fat node by a list of persistent nodes ea
h of 
onstant size, with twi
e asmany extra pointers as original �elds in the 
orresponding node of the augmented ephemeraldata stru
ture. The values in the �elds of the the persistent nodes are ordered by the versionlist. Thus ea
h persistent node is asso
iated with an interval of versions in the version listand it stores all values of its �elds that fall within this interval. The �rst among thesevalues is stored in an original �eld and the following ones o

upy extra �elds.The key idea underlying this simulation is to maintain the pointers in the persistentstru
ture 
onsistent su
h that when we traverse a pointer valid in version i we arrive at apersistent node whose valid interval 
ontains version i. More pre
isely, a value 
 of a pointer�eld must indi
ate a persistent node whose valid interval 
ontains the valid interval of 
.We simulate an update step to �eld f , while 
reating version i from version p(i), asfollows. If there is already a persistent node x 
ontaining f marked with version i thenwe merely 
hange the value of f in x. Otherwise, let x be the persistent node whose validinterval 
ontains version i. Let i+ be the version following i in the version list. Assume thenode following x does not have version stamp of i+. We 
reate two new persistent node x0,and x00, and insert them into the list of persistent nodes of x, su
h that x0 follows x, and x00follows x0. We give node x0 version stamp of i and �ll all its original �elds with their valuesat version i. The extra �elds in x0 are left empty. We give x00 version stamp of i+. We �llthe original �elds of x00 with their values at version i+. We move from the extra �elds of xall values with version stamps following i+ in the version list to x00. In 
ase the node whi
hfollows x in its list has version stamp i+ then x00 is not needed.After this �rst stage of the update step, values of pointer �elds previously indi
ating xmay be in
onsistent. The simulation then 
ontinues to restore 
onsisten
y. We lo
ate allnodes 
ontaining in
onsistent values and insert them into a set S. Then we pull out onenode at the time from S and �x its values. To �x a value we may have to repla
e it with two4When we 
opy a node, while 
reating version i, all the original �elds in the new 
opy have versionstamp i, if later, during the same update operation, we 
hange one of them then the update will simplyoverwrite their value.5So we 
annot simply overwrite a value in a prede
essor pointer.
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1-12or more values ea
h valid in a subinterval of the valid interval of the original value. Thisin
reases the number of values that has to be stored at the node so we may have to split thenode. This splitting may 
ause more values to be
ome in
onsistent. So node splitting and
onsisten
y �xing 
as
ades until 
onsisten
y is 
ompletely restored. The analysis is basedon the fa
t that ea
h node splitting produ
e a node with suÆ
iently many empty extra�elds. For further details see [18℄.1.3.3 Handling arraysDietz [12℄ des
ribes a general te
hnique for making arrays persistent. In his method, it takesO(log logm) time to a

ess the array and O(log logm) expe
ted amortized time to 
hangethe 
ontent of an entry, where m is the total number of updates. The spa
e is linear in m.We denote the size of the array by n and assume that n < m.Dietz essentially suggests to think of the array as one big fat node with n �elds. The listof versions-values pairs des
ribing the assignments to ea
h entry of the array is representedin a data stru
ture of van Emde Boas et. al. [34, 33℄. This data stru
ture is made to 
onsumespa
e linear in the number of items using dynami
 perfe
t hashing [14℄. Ea
h version isen
oded in this data stru
ture by its label in the asso
iated Order Maintenan
e (OM) datastru
ture. (See Se
tion 1.3.1.)A problem arises with the solution above sin
e we refer to the labels not solely via orderqueries on pairs of versions. Therefore when a label of a version 
hanges by the OM datastru
ture the old label has to be deleted from the 
orresponding van Emde Boaz datastru
ture and the new label has to be inserted instead. We re
all that any one of the knownOM data stru
tures 
onsists of two levels. The versions are partitioned into sublists of sizeO(logm). Ea
h sublist gets a label and ea
h version within a sublist gets a label. The�nal label of a version is the 
on
atenation of these two labels. Now this data stru
turesupports an insertion in O(1) time. However this insertion may 
hange the labels of a
onstant number of sublists and thereby impli
itly 
hange the labels of O(logm) versions.Reinserting all these labels into the van Emde Boaz stru
tures 
ontaining them may take
(logm log logm) timeDietz suggests to solve this problem by bu
ketizing the van Emde Boaz data stru
ture.Consider a list of versions stored in su
h a data stru
ture. We split the list into bu
kets ofsize O(logm). We maintain the versions in ea
h bu
ket in a regular balan
ed sear
h treeand we maintain the smallest version from ea
h bu
ket in a van Emde Boaz data stru
ture.This way we need to delete and reinsert a label of a version into the van Emde Boaz datastru
ture only when the minimum label in a bu
ket gets relabeled.Although there are only O(m= logm) elements now in the van Emde Boaz data stru
tures,it 
ould still be the 
ase that we relabel these parti
ular elements too often. This 
an happenif sublists that get split in the OM data stru
ture 
ontains a parti
ular large number ofbu
kets' minima. To prevent that from happening we modify slightly the OM data stru
tureas follows.We de�ne a potential to ea
h version whi
h equals 1 if the version is 
urrently not aminimum in its bu
ket of its van Emde Boaz data stru
ture and equals log logm if it isa minimum in its bu
ket. Noti
e that sin
e there are only O(m= logm) bu
kets' minimathe total potential assigned to all versions throughout the pro
ess is O(m). We partitionthe versions into sublists a

ording to their potentials where the sum of the potentials ofthe elements in ea
h sublist is O(logm). We assign labels to the sublists and within ea
hsublists as in the original OM data stru
ture. When we have to split a sublist the workasso
iated with the split, in
luding the required updates on the asso
iated van Emde Boazdata stru
tures, is proportional to the in
rease in the potential of this sublist sin
e it had
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tures 1-13last split.Sin
e we 
an model the memory of a Random A

ess Ma
hine (RAM) as a large array.This te
hnique of Dietz is in fa
t general enough to make any data stru
ture on a RAMpersistent with double logarithmi
 overhead on ea
h a

ess or update to memory.1.3.4 Making data stru
tures 
on
uently persistentFinding a general simulation to make a pointer based data stru
ture 
on
uently persistentis a 
onsiderably harder task. In a fully persistent setting we 
an 
onstru
t any version by
arrying out a parti
ular sequen
e of updates ephemerally. This seemingly inno
ent fa
t isalready problemati
 in a 
on
uently persistent setting. In a 
on
uently persistent settingwhen an update applies to two versions, one has to produ
e these two versions to performthe update. Note that these two versions may originate from the same an
estral version sowe need some form of persisten
e even to produ
e a single version. In parti
ular methodsthat a
hieve persisten
e typi
ally 
reate versions that share nodes. Semanti
ally however,when an update applied to versions that share nodes we would like the result to be as if weperform the update on two 
ompletely independent 
opies of the input versions.In a fully persistent setting if ea
h operation takes time polynomial in the number ofversions then the size of ea
h version is also polynomial in the number of versions. Thisbreaks down in a 
on
uently persistent setting where even when ea
h operation takes 
on-stant time the size of a single version 
ould be exponential in the number of versions. Re
allthe example of the linked list mentioned in Se
tion 1.1. It is initialized to 
ontain a singlenode and then 
on
atenated with itself n time. The size of the last versions is 2n. It followsthat any polynomial simulation of a data stru
ture to make it 
on
uently persistent mustin some 
ases represent versions is a 
ompressed form.Consider the naive s
heme to make a data stru
ture persistent whi
h 
opies the inputversions before ea
h update. This method is polynomial in a fully persistent setting whenwe know that ea
h update operation allo
ates a polynomial (in the number of versions)number of new nodes. This is not true in a 
on
uently persistent setting as the linked listexample given above shows. Thus there is no easy polynomial method to obtain 
on
uentlypersisten
e at all.What pre
isely 
auses this diÆ
ulty in obtaining a 
on
uently persistent simulation ? Letsassume �rst a fully persistent setting and the naive s
heme mentioned above. Consider asingle node x 
reated during the update that 
onstru
ted version v. Node x exists inversion v and 
opies of it may also exist in des
endant versions of v. Noti
e however thatea
h version derived from v 
ontains only a single node whi
h is either x or a 
opy of it. In
ontrast if we are in a 
on
uently persistent setting a des
endant version of v may 
ontainmore than a single 
opy of x. For example, 
onsider the linked list being 
on
atenated toitself as des
ribed above. Let x be the node allo
ated when 
reating the �rst version. Thenafter one 
atenation we obtain a version whi
h 
ontains two 
opies of x, after 2 
atenationswe obtain a version 
ontaining 4 
opies of x, and in version n we have 2n 
opies of x.Now, if we get ba
k to the fat node method, then we 
an observe that it identi�es a nodein a spe
i�
 version using a pointer to a fat node and a version number. This works sin
ein ea
h version there is only one 
opy of any node, and thus breaks down in the 
on
uentlypersistent setting. In a 
on
uently persistent setting we need more than a version numberand an address of a fat node to identify a parti
ular node in a parti
ular version.To address this identi�
ation problem Fiat and Kaplan [19℄ used the notion of pedigree.To de�ne pedigree we need the following notation. We denote the version DAG by D, andthe version 
orresponding to vertex v 2 D by Dv . Consider the naive s
heme de�ned above.Let w be some node in the data stru
ture Dv. We say that node w in version v was derived
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1-14from node y in version u if version u was one of the versions on whi
h the update produ
ingv had been performed, and furthermore node w 2 Dv was formed by a (possibly empty) setof assignments to a 
opy of node y 2 Du.Let w be a node in some version Du where Du is produ
ed by the naive s
heme. Weasso
iate a pedigree with w, and denote it by p(w). The pedigree, p(w), is a path p =hp0; p1; : : : ; pk = ui in the version DAG su
h that there exist nodes w0, w1, : : :, wk�1,wk = w, where wi is a node of Dpi , w0 was allo
ated in p0, and wi is derived from wi�1 for1 � i � k. We also 
all w0 the seminal node of w, and denote it by s(w). Note that p(w)and s(w) uniquely identify w among all nodes of the naive s
heme.As an example 
onsider Figure 1.1. We see that version v4 has three nodes (the 1st, 3rd,and 5th nodes of the linked list) with the same seminal node w00. The pedigree of the 1stnode in Dv4 is hv0; v1; v3; v4i. The pedigree of the 2nd node in Dv4 is also hv0; v1; v3; v4i butits seminal node is w0. The pedigree of the 3rd node is hv0; v2; v3; v4i. The pedigree of the4th node is hv2; v3; v4i and its seminal node is w000 . Similarly the pedigree of the 5th node ishv0; v2; v4i, and the pedigree of the 6th node is hv2; v4i.The basi
 simulation of Fiat and Kaplan is 
alled the full path method and it works asfollows. The data stru
ture 
onsists of a 
olle
tion of fat nodes. Ea
h fat node 
orrespondsto an expli
it allo
ation of a node by an update operation or in another words, to someseminal node of the naive s
heme. For example, the update operations of Figure 1.1 performs3 allo
ations (3 seminal nodes) labeled w0; w00, and w000 , so our data stru
ture will have 3fat nodes, f(w0), f(w00) and f(w000 ). The full path method represents a node w of the naives
heme by a pointer to the fat node representing s(w), together with the pedigree p(w).Thus a single fat node f represents all nodes sharing the same seminal node. We denotethis set of nodes by N(f). Note that N(f) may 
ontain nodes that 
o-exist within the sameversion and nodes that exist in di�erent versions. A fat node 
ontains the same �elds asthe 
orresponding seminal node. Ea
h of these �elds, however, rather than storing a singlevalue as in the original node stores a dynami
 table of �eld values in the fat node. Thesimulation will be able to �nd the 
orre
t value in node w 2 N(f) using p(w). To spe
ify therepresentation of a set of values we need the following de�nition of an assignment pedigree.Let p = hp0; : : : ; pk = ui be the pedigree of a node w 2 Du. Let wk = w;wk�1; : : : ; w1,wi 2 Dpi be the sequen
e of nodes su
h that wi 2 Dpi is derived from wi�1 2 Dpi�1 . Thissequen
e exists by the de�nition of node's pedigree. Let A be a �eld in w and let j be themaximum su
h that there has been an assignment to �eld A in wj during the update that
reated pj . We de�ne the assignment pedigree of a �eld A in node w, denoted by p(A;w),to be the pedigree of wj , i.e. p(A;w) = hp0; p1; : : : ; pji.In the example of Figure 1.1 the nodes 
ontain one pointer �eld (named next) and onedata �eld (named x). The assignment pedigree of x in the 1st node of Dv4 is simply hv0i, theassignment pedigree of x in the 2nd node of Dv4 is likewise hv0i, the assignment pedigree ofx in the 3rd node of Dv4 is hv0; v2; v3i. Pointer �elds also have assignment pedigrees. Theassignment pedigree of the pointer �eld in the 1st node of Dv4 is hv0; v1i, the assignmentpedigree of the pointer �eld in the 2nd node of Dv4 is hv0; v1; v3i, the assignment pedigreeof the pointer �eld of the 3rd node of Dv4 is hv0; v2i, �nally, the assignment pedigree of thepointer �eld of the 4th node of Dv4 is hv2; v3; v4i.We 
all the set fp(A;w) j w 2 N(f)g the set of all assignment pedigrees for �eld A in afat note f , and denote it by P (A; f). The table that represents �eld A in fat node f 
ontainsan entry for ea
h assignment pedigree in P (A; f). The value of a table entry, indexed by anassignment pedigree p = hp0; p1; : : : ; pji, depends on the type of the �eld as follows. If A isa data �eld then the value stored is the value assigned to A in the node wj 2 Dvj whosepedigree is p. If A is a pointer �eld then let w be the node pointed to by �eld A after theassignment to A in wj . We store the pedigree of w and the address of the fat node that
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FIGURE 1.1: A DAG of �ve versions. In ea
h 
ir
le we show the 
orresponding updateoperation and the resulting version. Nodes with the same 
olor originate from the sameseminal node. The three gray nodes in version Dv4 all have the same seminal node (w00),and are distinguished by their pedigrees hv0; v1; v3; v4i, hv0; v2; v3; v4i, and hv0; v2; v4i.represents the seminal node of w.An a

ess pointer to a node w in version v is represented by a pointer to the fat noderepresenting the seminal node of w and the pedigree of w.In Figure 1.2 we give the fat nodes of the persistent data stru
ture given in Figure 1.1.For example, the �eld next has three assignments in nodes of N(f(w00)). Thus, there arethree assignment pedigrees in P (next; f(w00)):1. hv0i | allo
ation of w00 in version Dv0 and default assignment of null to next.2. hv0; v1i | inverting the order of the linked list in version Dv1 and thus assigningnext a new value. The pointer is to a node whose pedigree is hv0; v1i and whose
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FIGURE 1.2: The fat nodes for the example of Figure 1.1.seminal node is w0. So we asso
iate the value (hv0; v1i; f(w0)) with hv0; v1i.3. hv0; v2i | allo
ating a new node, w000 , in version Dv2 , and assigning next topoint to this new node. The pedigree of w000 is hv2i so we asso
iate the value(hv2i; f(w000 )) with hv0; v2i.We see all three entries in the table for next in the fat node f(w00) (Figure 1.2). Similarly,we give the table for �eld x in f(w00) as well as the tables for both �elds in fat nodes f(w0)and f(w000 ).When we traverse the data stru
ture we are pointing to some fat node f and hold apedigree q of some node w whose seminal node 
orresponds to f and we would like toretrieve the value of �eld A in node w from the table representing �eld A in f . We do thatas follows. First we identify the assignment pedigree p(A;w) of �eld A in node w. This isthe longest pedigree whi
h is a pre�x of q and has an entry in this table. In 
ase A is a data�eld, the value we are after is simply the value asso
iated with p(A;w). However if A is apointer �eld then the value stored with p(A;w) may not be the value of A in w. This valueidenti�es a node in the version where the assignment o

urred, whereas we are interestedin a node in the version of w where this pointer �eld points to.
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tures 1-17Let q = hq0; : : : ; qki and let p(A;w) = hq0; q1; : : : ; qji. Let the value of p(A;w) be (t; f),where t is the pedigree of the target node in Dqj and f is the fat node representing theseminal node of this target node. The nodes identi�ed by the pedigrees p(A;w) and t were
opied in versions qj+1, : : :, qk without any assignment made to �eld A in the nodes derivedfrom the node whose pedigree is p(A;w). Thus the pedigree of the target node of �eld A ofnode w in Dqk is tkhqj+1; : : : ; qki, where k represents 
on
atenation.It follows that we need representations for pedigrees and the tables representing �eldvalues that support an eÆ
ient implementation of the followings.1. Given a pedigree q �nd the longest pre�x of q stored in a table.2. Given a pedigree q, repla
e a pre�x of q with another pedigree p.3. To fa
ilitate updates we also need to be able to add a pedigree to a table repre-senting some �eld with a 
orresponding value.In their simplest simulation Fiat and Kaplan suggested to represent pedigrees as linkedlists of version numbers, and to represent tables with �eld values as tries. Ea
h assignmentpedigree 
ontained in the table is represented by a path in the 
orresponding trie. The lastnode of the path stores the asso
iated value. Nodes in the trie 
an have large degrees so foreÆ
ien
y we represent the 
hildren of ea
h node in a trie by a splay tree.Let U be the total number of assignments the simulation performs and 
onsider the update
reating version v. Then with this implementation ea
h assignment performed during thisupdate requires O(d(v)) words of size O(logU) bits and takes O(d(v) + logU), where d(v)is the depth of v in the DAG. Field retrieval also takes O(d(v) + logU) time.The se
ond method suggested by Fiat and Kaplan is the 
ompressed path method. Theessen
e of the 
ompressed path method is a parti
ular partition of our DAG into disjointtrees. This partition is de�ned su
h that every path enters and leaves any spe
i�
 tree atmost on
e. The 
ompressed path method en
odes paths in the DAG as a sequen
e of pairs ofversions. Ea
h su
h pair 
ontains a version where the path enters a tree T and the versionwhere the path leaves the tree T . The length of ea
h su
h representation is O(e(D)).6Ea
h value of a �eld in a fat node is now asso
iated with the 
ompressed representationof the path of the node in N(f) in whi
h the 
orresponding assignment o

urred. A keyproperty of these 
ompressed path representations is that they allow easy implementationof the operations we need to perform on pedigree, like repla
ing a pre�x of a pedigreewith another pedigree when traversing a pointer. With the 
ompressed path method ea
hassignment requires up to O(e(D)) words ea
h of O(logU) bits. Sear
hing or updating thetrie representing all values of a �eld in a fat node requires O(e(D) + logU) time. For the
ase where the DAG is a tree this method degenerates to the fat node simulation of [18℄.Fiat and Kaplan also suggested how to use randomization to speed up their two basi
methods at the expense of (slightly) larger spa
e expansion and polynomially small errorprobability. The basi
 idea is en
ode ea
h path (or 
ompressed path) in the DAG by aninteger. We assign to ea
h version a random integer, and the en
oding of a path p is simplythe sum of the integers that 
orrespond to the versions on p. Ea
h value of a �eld in a fatnode is now asso
iated with the integer en
oding the path of the node in N(f) in whi
h the
orresponding assignment o

urred. To index the values of ea
h �eld we use a hash tablestoring all the integers 
orresponding to these values.6Re
all that e(D) is the logarithm of the maximum number of di�erent paths from the root of the DAGto any parti
ular version.



www.manaraa.com

1-18To deal with values of pointer �elds we have to 
ombine this en
oding with a represen-tation of paths in the DAG (or 
ompressed paths) as balan
ed sear
h trees, whose leaves(in left to right order) 
ontain the random integers asso
iated with the verti
es along thepath (or 
ompressed path). This representation allows us to perform 
ertain operations onthese paths in logarithmi
 (or poly-logarithmi
) time whereas the same operations requiredlinear time using the simpler representation of paths in the non-randomized methods.1.4 Making spe
i�
 data stru
tures more eÆ
ientThe purely fun
tional deques of Kaplan and Tarjan [23℄, the 
on
uently persistent dequesof Kaplan, Okasaki, and Tarjan [21℄, the purely fun
tional heaps of Brodal and Okasaki [6℄,and the purely fun
tional �nger sear
h trees of Kaplan and Tarjan [22℄, are all based on asimple and useful me
hanism 
alled redundant 
ounters, whi
h to the best of our knowledge�rst appeared in le
ture notes by Clan
y and Knuth [9℄. In this se
tion we des
ribe whatredundant 
ounters are, and demonstrate how they are used in simple persistent dequesdata stru
ture.A persistent implementation of deques support the following operations:q0 = push(x; q): Inserts an element x to the beginning of the deque q returning a new dequeq0 in whi
h x is the �rst element followed by the elements of q.(x; q0) = pop(q): Returns a pair where x is the �rst element of q and q0 is a deque 
ontainingall elements of q but x.q0 = Inje
t(x; q): Inserts an element x to the end of the deque q returning a new deque q0in whi
h x is the last element pre
eded by the elements of q.(x; q0) = eje
t(q): Returns a pair where x is the last element of q and q0 is a deque 
ontainingall elements of q but x.A sta
k supports only push and pop, a queue supports only push and eje
t. Catenabledeques also support the operationq = 
atenate(q1; q2): Returns a queue q 
ontaining all the elements of q1 followed by theelements of q2.Although queues, and in parti
ular 
atenable queues, are not trivial to make persistent,sta
ks are easy. The regular representation of a sta
k by a singly linked list of nodes, ea
h
ontaining an element, ordered from �rst to last, is in fa
t purely fun
tional. To push anelement onto a sta
k, we 
reate a new node 
ontaining the new element and a pointer tothe node 
ontaining the previously �rst element on the sta
k. To pop a sta
k, we retrievethe �rst element and a pointer to the node 
ontaining the previously se
ond element.Dire
t ways to make queues persistent simulate queues by sta
ks. One sta
k holds ele-ments from the beginning of the queue and the other holds elements from its end. If weare interested in fully persisten
e this simulation should be real time and its details are nottrivial. For a detailed dis
ussion see Kaplan and Tarjan [23℄ and the referen
es there.Kaplan and Tarjan [23℄ des
ribed a new way to do a simulation of a deque with sta
ks.They suggest to represent a deque by a re
ursive stru
ture that is built from bounded-sizedeques 
alled bu�ers. Bu�ers are of two kinds: pre�xes and suÆxes. A non-empty deque qover a set A is represented by an ordered triple 
onsisting of a pre�x , prefix(q), of elementsof A, a 
hild deque, 
hild(q), whose elements are ordered pairs of elements of A, and asuÆx , suffix(q), of elements of A. The order of elements within q is the one 
onsistentwith the orders of all of its 
omponent parts. The 
hild deque 
hild(q), if non-empty, isrepresented in the same way. Thus the stru
ture is re
ursive and unwinds linearly. Wede�ne the des
endants f
hildi( q)g of deque d in the standard way, namely 
hild0(q) = qand 
hildi+1(q) = 
hild(
hildi(q)) for i � 0 if 
hildi(q) is non-empty.
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tures 1-19Observe that the elements of q are just elements of A, the elements of 
hild(q) are pairsof elements of A, the elements of 
hild(
hild(q)) are pairs of pairs of elements of A, and soon. One 
an think of ea
h element of 
hildi(q) as being a 
omplete binary tree of depth i,with elements of A at its 2i leaves. One 
an also think of the entire stru
ture representingq as a sta
k (of q and its des
endants), ea
h element of whi
h is pre�x-suÆx pair. All theelements of q are stored in the pre�xes and suÆxes at the various levels of this stru
ture,grouped into binary trees of the appropriate depths: level i 
ontains the pre�x and suÆxof 
hildi(q). See Figure 1.3.
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FIGURE 1.3: Representation of a deque of elements over A. Ea
h 
ir
le denotes a dequeand ea
h re
tangle denotes a bu�er. Squares 
orrespond to elements from A whi
h wedenote by numbers and letters. Ea
h bu�er 
ontains 0, 1, or 2 elements. Three versionsare shown V1, V2, and V3. Version V2 was obtained from V1 by inje
ting the element f .Version V3 obtained from version V2 by inje
ting the element g. The latter inje
t triggeredtwo re
ursive inje
ts into the 
hild and grand
hild deques of V2. Note that identi
al binarytrees and elements are represented only on
e but we draw them multiple times to avoid
luttering of the �gure.Be
ause of the pairing, we 
an bring two elements up to level i by doing one pop or eje
tat level i+ 1. Similarly, we 
an move two elements down from level i by doing one push orinje
t at level i+ 1. This two-for-one payo� leads to real-time performan
e.Assume that ea
h pre�x or suÆx is allowed to hold 0, 1, or 2 elements, from the beginningor end of the queue, respe
tively. We 
an implement q0 = push(x; q) as follows. If the pre�xof q 
ontains 0 or 1 elements we allo
ate a new node to represent q0 make its 
hild dequeand its suÆx identi
al to the 
hild and suÆx of q, respe
tively. The pre�x of q0 is a newlyallo
ated pre�x 
ontaining x and the element in the pre�x of q, if the pre�x of q 
ontainedone element. We return a pointer the new node whi
h represents q0. For an example
onsider version V2 shown in Figure 1.3 that was obtained from version V1 by a 
ase ofinje
t symmetri
 to the 
ase of the push just des
ribed.
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1-20The hard 
ase of the push is when the pre�x of q already 
ontains two elements. Inthis 
ase we make a pair 
ontaining these two elements and push this pair re
ursively into
hild(q). Then we allo
ate a new node to represent q0, make its suÆx identi
al to the suÆxof q, make the deque returned by the re
ursive push to 
hild(q) the 
hild of q0, and makethe pre�x of q0 be a newly allo
ated pre�x 
ontaining x. For an example 
onsider versionV3 shown in Figure 1.3 that was obtained from version V2 by a re
ursive 
ase of inje
tsymmetri
 to the re
ursive 
ase of the push just des
ribed. The implementations of popand eje
t is symmetri
.This implementation is 
learly purely fun
tional and therefore fully persistent. Howeverthe time and spa
e bounds per operation areO(logn). The same bounds as one gets by usingsear
h trees to represent the deques with the path 
opying te
hnique. These logarithmi
time bounds are by far o� from the ephemeral O(1) time and spa
e bounds.Noti
e that there is a 
lear 
orresponden
e between this data stru
ture and binary 
oun-ters. If we think of a bu�er with two elements as the digit 1, and of any other bu�er as thedigit 0, then the implementation of push(q) is similar to adding one to the binary numberde�ned by the pre�xes of the queues 
hildi(q). It follows that if we are only interested inpartially persistent deques then this implementation has O(1) amortized time bound peroperation (see the dis
ussion of binary 
ounters in the next se
tion). To make this simu-lation eÆ
ient in a fully persistent setting and even in the worst 
ase, Kaplan and Tarjansuggested to use redundant 
ounters.1.4.1 Redundant binary 
ountersTo simplify the presentation we des
ribe redundant binary 
ounters, but the ideas 
arryover to any basis. Consider �rst the regular binary representation of an integer i. To obtainfrom this representation the representation of i + 1 we �rst 
ip the rightmost digit. If we
ipped a 1 to 0 then we repeat the pro
ess on the next digit to the left. Obviously, thispro
ess 
an be long for some integers. But it is straightforward to show that if we 
arry outa sequen
e of su
h in
rements starting from zero then on average only a 
onstant numberof digits 
hange per in
rement.7 Redundant binary representations (or 
ounters as we will
all them) address the problem of how to represent i so we 
an obtain a representation ofi+ 1 while 
hanging only a 
onstant number of digits in the worst 
ase.A redundant binary representation, d, of a non-negative integer x is a sequen
e of digitsdn; : : : ; d0, with di 2 f0; 1; : : : ; 2g, su
h that x = Pni=0 di2i. We 
all d regular if, betweenany two digits equal to 2, there is a 0, and there is a 0 between the rightmost 2 and the leastsigni�
ant digit. Noti
e that the traditional binary representation of ea
h integer (whi
hdoes not use the digit 2) is regular . In the sequel when we refer to a regular representationwe mean a regular redundant binary representation, unless we expli
itly state otherwise.Suppose we have a regular representation of i. We 
an obtain a regular representation ofi+1 as follows. First we in
rement the rightmost digit. Note that sin
e the representationof i is regular, its rightmost digit is either 0 or 1. So after the in
rement the rightmost digitis either 1 or 2 and we still have a redundant binary representation for i+ 1. Our 
on
ernis that this representation of i + 1 may not be regular. However, sin
e the representationof i we started out with was regular the only violation to regularity that we may have inthe representation of i+ 1 is la
king a 0 between the rightmost 2 and the least signi�
ant7The rightmost digit 
hanges every in
rement, the digit to it left 
hanges every other operation, and soon.
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tures 1-21digit. It is easy to 
he
k that between any two digits equal to 2, there still is a 0, by theregularity of i.We 
an 
hange the representation of i+ 1 to a representation whi
h is guaranteed to beregular by a simple �x operation. A �x operation on a digit di = 2 in
rements di+1 by 1and sets di to 0, produ
ing a new regular representation d0 representing the same numberas d.8 If after in
rementing the rightmost digit we perform a �x on the rightmost 2 thenwe swit
h to another representation of i+ 1 that must be regular. We omit the proof herewhi
h is straightforward.It is 
lear that the in
rement together with the �x that may follow 
hange at most threedigits. Therefore redundant binary representations allow to perform an in
rement while
hanging 
onstantly many digits. However noti
e that in any appli
ation of this numberingsystem we will also need a representation that allows to get to the digits whi
h we need to�x eÆ
iently. We show one su
h representation in the next se
tion.These redundant representations 
an be extended so that de
rement 
hanges only a 
on-stant number of digits, or even more generally so that we 
an in
rement or de
rement anydigit (add or subtra
t 2i) while 
hanging a 
onstant number of other digits. These additionalproperties of the 
ounters were exploited by other appli
ations (see e.g. [22, 24℄.1.4.2 Persistent dequesKaplan and Tarjan use this redundant binary system to improve the deque implementationwe des
ribed above as follows. We allow ea
h of the pre�xes and suÆxes to 
ontain between0 and 5 elements. We label ea
h bu�er, and ea
h deque, by one of the digits 0, 1, and 2. Welabel a bu�er 0 if it has two or three elements, we label it 1 if it has one or four elements,and we label it 2 if it has zero or �ve elements. Observe that we 
an add one element toor delete one element from a bu�er labeled 0 or 1 without violating its size 
onstraint: Abu�er labeled 0 may 
hange its label to 1, and a bu�er labeled 1 may 
hange its label to 2.(In fa
t a 1 
an also be 
hanged to 0 but this may not violate regularity.) The label of adeque is the larger among the labels of its bu�ers, unless its 
hild and one of its bu�ers areempty, in whi
h 
ase the label of the deque is identi
al to the label of its nonempty bu�er.This 
oloring of the deques maps ea
h deque to a redundant binary representation. Theleast signi�
ant digit of this representation is the digit of q, the next signi�
ant digit isthe digit of 
hild(q), and, in general, the ith signi�
ant digit is the digit 
orresponding to
hildi(q) if the latter is not empty. We impose an additional 
onstraint on the deques andrequire that the redundant binary representation of any top-level deque is regular.A regular top-level deque is labeled 0 or 1 whi
h implies that both its pre�x and its suÆxare labeled 0 or 1. This means that any deque operation 
an be performed by operating onthe appropriate top-level bu�er. Suppose that the operation is either a push or a pop, the
ase of inje
t and eje
t is symmetri
. We 
an 
onstru
t the resulting queue q0 by setting
hild(q0) = 
hild(q) and suffix(q0) = suffix(q). The pre�x of q0 is a newly allo
ated bu�erthat 
ontains the elements in prefix(q) together with the new element in 
ase of push orwithout the �rst element in 
ase of pop. Clearly all these manipulations take 
onstant time.The label of q0, however, may be one larger than the label of q. So the redundant binaryrepresentation 
orresponding to q0 is either the same as the redundant binary representationof q in whi
h 
ase it is regular, or it is obtained from the redundant binary representation ofq by in
rementing the least signi�
ant digit. (The least signi�
ant digit 
an also de
rease in8We use the �x only when we know that di+1 is either 0 or 1.
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1-22whi
h 
ase regularity is also preserved.) This 
orresponds to the �rst step in the in
rementpro
edure for redundant regular representations des
ribed in the previous se
tion.To make the redundant binary representation of q0 regular we may have to apply a �xoperation. Let i be the minimum su
h that 
hildi(q0) is labeled 2. If for all j < i, 
hildj(q0)is labeled 1 then the �x has to 
hange the label of 
hildi(q0) to 0 and in
rement the labelof 
hildi+1(q0).Fortunately, we have an appropriate interpretation for su
h a �x. Assume 
hildi+1(q0)have a non-empty 
hild. (We omit the dis
ussion of the 
ase where 
hildi+1(q0) have anempty 
hild whi
h is similar.) We know that the label of 
hildi+1(q0) is either 0 or 1 soneither of its bu�ers is empty or full. If the pre�x of 
hildi(q0) has at least four elements weeje
t 2 of these elements and push them as a single pair to the pre�x of 
hildi+1(q0). If thepre�x of 
hildi(q0) has at most one element we pop a pair from the pre�x of 
hildi+1(q0)and inje
t the 
omponents of the pair into the pre�x of 
hildi(q0). This makes the pre�xof 
hildi(q0) 
ontaining either two or three elements. Similarly by popping a pair from orpushing a pair to the suÆx of 
hildi(q0), and inje
ting a pair to or eje
ting a pair from thesuÆx of 
hildi+1(q0) we make the suÆx of 
hildi(q0) 
ontaining two or three elements. Asa result the label of 
hildi(q0) and its two bu�ers be
omes 0 while possibly in
reasing thelabel of one or both bu�ers of 
hildi+1(q0) and thereby the label of 
hildi+1(q0) as well.There is one missing pie
e for this simulation to work eÆ
iently. The topmost dequelabeled 2 may be arbitrarily deep in the re
ursive stru
ture of q0, sin
e it 
an be separatedfrom the top level by many deques labeled 1. To implement the �x eÆ
iently we have to beable to �nd this deque fast and 
hange it in a purely fun
tional way by 
opying the dequesthat 
hange without having to 
opy all their an
estors deques.For this reason we do not represent a deque in the obvious way, as a sta
k of pre�x-suÆxpairs. Instead, we break this sta
k up into substa
ks. There is one substa
k for the top-level deque and one for ea
h des
endant deque labeled 0 or 2 not at the top level. Ea
hsubsta
k 
onsists of a top-level, or a deque labeled 0, or a deque labeled 2 and all 
onse
utiveproper des
endant deques labeled 1. We represent the entire deque by a sta
k of substa
ksof pre�x-suÆx pairs using this partition into substa
ks. This 
an be realized with fourpointers per ea
h node representing a deque at some level. Two of the pointers are to thepre�x and suÆx of the deque. One pointer is to the node for the 
hild deque if this dequeis non-empty and labeled 1. One pointer is to the node of the nearest proper des
endantdeque not labeled 1, if su
h a deque exists and q itself is not labeled 1 or top-level. SeeFigure 1.4.A single deque operation will require a

ess to at most the top three substa
ks, and toat most the top two elements in any su
h substa
k. The label 
hanges 
aused by a dequeoperation produ
e only minor 
hanges to the sta
k partition into substa
ks, 
hanges that
an be made in 
onstant time. In parti
ular, 
hanging the label of the top-level deque doesnot a�e
t the partition into substa
ks. Changing the label of the topmost deque whi
h islabeled 2 to 0 and the label of its 
hild from 1 to 2 splits one substa
k into its �rst element,now a new substa
k, and the rest. This is just a substa
k pop operation. Changing the labelof the topmost deque whi
h is labeled 2 to 0 and the label of its 
hild from 0 to 1 merges asingleton substa
k with the substa
k under it. This is just a substa
k push operation.To add 
atenation, Kaplan and Tarjan had to 
hange the de�nition of the data stru
tureand allow deques to be stored as 
omponents of elements of re
ursive deques. The redundantbinary numbering system, however, still plays a key role. To represent a 
atenable deque,Kaplan and Tarjan use non
atenable deques as the basi
 building blo
ks. They de�ne atriple over a set A re
ursively as a pre�x of elements of A, a possibly empty deque of triplesover A, and a suÆx of elements of A, where ea
h pre�x or suÆx is a non
atenable deque.Then, they represent a 
atenable deque of elements from A by either one or two triples over
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FIGURE 1.4: Pointer representation of sta
k of substa
ks stru
ture. Ea
h 
ir
le 
orrespondto a deque and it is marked by its label. Ea
h bu�er is a re
tangle whi
h is marked byits label. Triangles denote 
omplete binary trees of elements whose depths depend on thelevel. This parti
ular queue is represented by a sta
k of three substa
ks.A. The underlying skeleton of this stru
ture is a binary tree (or two binary trees) of triples.The redundant binary number system is extended so that it 
an distribute work along thesetrees by adding an extra digit.Kaplan, Okasaki, and Tarjan [21℄ simpli�ed these data stru
tures at the expense of makingthe time bounds amortized rather than worst 
ase and using assignment, thus obtaining a
on
uently persistent data stru
ture whi
h is not purely fun
tional. The key idea underlyingtheir data stru
ture is to relax the rigid 
onstraint of maintaining regularity. Instead, theysuggest to \improve" the representation of a deque q with full or empty pre�x when we tryto push or pop an element from it. Similarly, with full or empty suÆx. This improvementin the representation of q is visible to all deques that 
ontain q as a subdeque at somelevel and prevents from pushing into deques with full pre�xes or popping from deques withempty pre�xes from happening too often.
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i�
ally, say we push into a deque q with full pre�x. Then we �rst eje
t twoelement from this pre�x, make a pair 
ontaining them, and push the pair re
ursively into
hild(q). Let the result of the re
ursive push be 
hild0(q). We then 
hange the representationof q so that it has a new pre�x whi
h 
ontains all the elements in the pre�x of q but thetwo whi
h we eje
ted, and its 
hild deque is 
hild0(q). The suÆx of q does not 
hange.Finally we perform the push into q by 
reating a new queue q0 that has the same suÆxand 
hild deque as q, but has a new pre�x that 
ontains the elements in the pre�x of qtogether with the new element. A 
areful but simple analysis shows that ea
h operation inthis implementation takes O(1) amortized time. By extending this idea, Kaplan, Okasaki,and Tarjan managed to 
onstru
t 
atenable deques using only 
onstant size bu�ers as thebasi
 building blo
ks.1.5 Con
luding remarks and open questionsMu
h progress have been made on persistent data stru
tures sin
e the seminal paper ofDris
oll et. al. [18℄. This progress has three folds: In developing general te
hniques to makeany data stru
ture persistent, in making spe
i�
 data stru
tures persistent, and in emerg-ing algorithmi
 appli
ations. Te
hniques developed to address these 
hallenges sometimesproved useful for other appli
ations as well.This algorithmi
 �eld still 
omprise intriguing 
hallenges. In developing general te
h-niques to make data stru
tures persistent, a notable 
hallenge is to �nd a way to makethe time slowdown of the node splitting method worst 
ase. Another interesting resear
htra
k is how to restri
t the operations that 
ombine versions in a 
on
uently persistent set-ting so that better time bounds, or simpler simulations, are possible. We also believe thatthe te
hniques and data stru
tures developed in this �eld would prove useful for numerousforth
oming appli
ations.A
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